On the Evaluation of Sequential Machine Learning for Network Intrusion Detection

被引:11
|
作者
Corsini, Andrea [1 ]
Yang, Shanchieh Jay [2 ]
Apruzzese, Giovanni [3 ]
机构
[1] Univ Modena & Reggio Emilia, Modena, Italy
[2] Rochester Inst Technol, Rochester, NY 14623 USA
[3] Univ Liechtenstein, Vaduz, Liechtenstein
来源
ARES 2021: 16TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY | 2021年
关键词
Long Short Term Memory; Machine Learning; Network Intrusion Detection; Cybersecurity; Network Flows; Deep Learning; BOTNET;
D O I
10.1145/3465481.3470065
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent advances in deep learning renewed the research interests in machine learning for Network Intrusion Detection Systems (NIDS). Specifically, attention has been given to sequential learning models, due to their ability to extract the temporal characteristics of network traffic flows (NetFlows), and use them for NIDS tasks. However, the applications of these sequential models often consist of transferring and adapting methodologies directly from other fields, without an in-depth investigation on how to leverage the specific circumstances of cybersecurity scenarios; moreover, there is a lack of comprehensive studies on sequential models that rely on NetFlow data, which presents significant advantages over traditional full packet captures. We tackle this problem in this paper. We propose a detailed methodology to extract temporal sequences of NetFlows that denote patterns of malicious activities. Then, we apply this methodology to compare the efficacy of sequential learning models against traditional static learning models. In particular, we perform a fair comparison of a 'sequential' Long Short-Term Memory (LSTM) against a 'static' Feedforward Neural Networks (FNN) in distinct environments represented by two well-known datasets for NIDS: the CICIDS2017 and the CTU13. Our results highlight that LSTM achieves comparable performance to FNN in the CICIDS2017 with over 99.5% F1-score; while obtaining superior performance in the CTU13, with 95.7% F1-score against 91.5%. This paper thus paves the way to future applications of sequential learning models for NIDS.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Evaluation of Machine Learning Techniques for Network Intrusion Detection
    Zaman, Marzia
    Lung, Chung-Horng
    NOMS 2018 - 2018 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, 2018,
  • [2] Machine Learning Based Network Intrusion Detection
    Lee, Chie-Hong
    Su, Yann-Yean
    Lin, Yu-Chun
    Lee, Shie-Jue
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA), 2017, : 79 - 83
  • [3] Machine Learning for Network Intrusion Detection-A Comparative Study
    Al Lail, Mustafa
    Garcia, Alejandro
    Olivo, Saul
    FUTURE INTERNET, 2023, 15 (07):
  • [4] Evaluation of Machine Learning Algorithms in Network-Based Intrusion Detection Using Progressive Dataset
    Chua, Tuan-Hong
    Salam, Iftekhar
    SYMMETRY-BASEL, 2023, 15 (06):
  • [5] Comparison of Machine Learning and Deep Learning Models for Network Intrusion Detection Systems
    Thapa, Niraj
    Liu, Zhipeng
    Kc, Dukka B.
    Gokaraju, Balakrishna
    Roy, Kaushik
    FUTURE INTERNET, 2020, 12 (10) : 1 - 16
  • [6] Network intrusion detection system using an optimized machine learning algorithm
    Alabdulatif, Abdulatif
    Rizvi, Syed Sajjad Hussain
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2023, 42 (01) : 153 - 164
  • [7] Network Intrusion Detection using Hybrid Machine Learning
    Chuang, Po-Jen
    Li, Si-Han
    2019 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY), 2019, : 289 - 293
  • [8] Comparative research on network intrusion detection methods based on machine learning
    Zhang, Chunying
    Jia, Donghao
    Wang, Liya
    Wang, Wenjie
    Liu, Fengchun
    Yang, Aimin
    COMPUTERS & SECURITY, 2022, 121
  • [9] The Cross-Evaluation of Machine Learning-Based Network Intrusion Detection Systems
    Apruzzese, Giovanni
    Pajola, Luca
    Conti, Mauro
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (04): : 5152 - 5169
  • [10] Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey
    Liu, Hongyu
    Lang, Bo
    APPLIED SCIENCES-BASEL, 2019, 9 (20):