Segregation of xenon to dislocations and grain boundaries in uranium dioxide

被引:47
|
作者
Nerikar, P. V. [1 ]
Parfitt, D. C. [2 ]
Trujillo, L. A. Casillas [1 ]
Andersson, D. A. [1 ]
Unal, C. [1 ]
Sinnott, S. B. [3 ]
Grimes, R. W. [2 ]
Uberuaga, B. P. [1 ]
Stanek, C. R. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England
[3] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
来源
PHYSICAL REVIEW B | 2011年 / 84卷 / 17期
基金
英国工程与自然科学研究理事会;
关键词
ATOMIC-SCALE STRUCTURE; MOLECULAR-DYNAMICS; MICROSTRUCTURAL EVOLUTION; CERAMIC/METAL INTERFACES; RADIATION-DAMAGE; GAS-RELEASE; MGO/CU AG; UO2; CHEMISTRY; DEFECTS;
D O I
10.1103/PhysRevB.84.174105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is well known that Xe, being insoluble in UO(2), segregates to dislocations and grain boundaries (GBs), where bubbles may form resulting in fuel swelling. Less well known is how sensitive this segregation is to the structure of the dislocation or GB. In this work we employ pair potential calculations to examine Xe segregation to dislocations (edge and screw) and several representative grain boundaries (Sigma 5 tilt, Sigma 5 twist, and random). Our calculations predict that the segregation trend depends significantly on the type of dislocation or GB. In particular we find that Xe prefers to segregate strongly to the random boundary as compared to the other two boundaries and to the screw dislocation rather than the edge. Furthermore, we observe that neither the volumetric strain nor the electrostatic potential of a site can be used to predict its segregation characteristics. These differences in segregation characteristics are expected to have important consequences for the retention and release of Xe in nuclear fuels. Finally, our results offer general insights into how atomic structure of extended defects influence species segregation.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Modeling the Interaction of Helium with Dislocations and Grain Boundaries in Alpha-iron
    Heinisch, H. L.
    Gao, F.
    Kurtz, R. J.
    EFFECTS OF RADIATION ON MATERIALS: 23RD INTERNATIONAL SYMPOSIUM, 2008, 1492 : 190 - 196
  • [22] Hydrogen segregation to inclined Σ3⟨110⟩ twin grain boundaries in nickel
    O'Brien, Christopher J.
    Foiles, Stephen M.
    PHILOSOPHICAL MAGAZINE, 2016, 96 (26) : 2808 - 2828
  • [23] B segregation to grain boundaries and diffusion in polycrystalline Si with flash annealing
    Jin, S.
    Jones, K. S.
    Law, M. E.
    Camillo-Castillo, R.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (04)
  • [24] Atomistic and machine learning studies of solute segregation in metastable grain boundaries
    Mahmood, Yasir
    Alghalayini, Maher
    Martinez, Enrique
    Paredis, Christiaan J. J.
    Abdeljawad, Fadi
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [25] Mechanics of point defect diffusion near dislocations and grain boundaries: A chemomechanical framework
    Zarnas, Patrick D.
    Dingreville, Remi
    Qu, Jianmin
    COMPUTATIONAL MATERIALS SCIENCE, 2018, 144 : 99 - 112
  • [26] Asymmetric ability of grain boundaries to generate dislocations under tensile or compressive loadings
    Shimokawa, T.
    PHYSICAL REVIEW B, 2010, 82 (17):
  • [27] Phase field simulation of grain growth in porous uranium dioxide
    Ahmed, Karim
    Pakarinen, Janne
    Allen, Todd
    El-Azab, Anter
    JOURNAL OF NUCLEAR MATERIALS, 2014, 446 (1-3) : 90 - 99
  • [28] Evolution of dislocations and grain boundaries during multi-axial forging of tantalum
    Kedharnath, A.
    Kapoor, Rajeev
    Sarkar, Apu
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2023, 112
  • [29] The grain-size effect on thermal conductivity of uranium dioxide
    Shrestha, K.
    Yao, T.
    Lian, J.
    Antonio, D.
    Sessim, M.
    Tonks, M. R.
    Gofryk, K.
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (12)
  • [30] Effect of Grain-Boundary Segregation on the Diffusion of Atoms in Grain Boundaries in Copper-Based Systems
    V. V. Kulagin
    A. A. Itskovich
    A. O. Rodin
    B. S. Bokshtein
    Russian Metallurgy (Metally), 2020, 2020 : 1055 - 1059