Mean field dynamics of a quantum tracer particle interacting with a boson gas

被引:5
作者
Chen, Thomas [1 ]
Soffer, Avy [2 ,3 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[3] Cent China Normal Univ, Dept Math & Appl Math, Wuhan, Hubei, Peoples R China
基金
美国国家科学基金会;
关键词
Bose gas; Mean field limit; Tracer particle; Well-posedness; NONLINEAR SCHRODINGER-EQUATION; GROSS-PITAEVSKII HIERARCHY; CLASSICAL-LIMIT; PAIR EXCITATIONS; DERIVATION; UNIQUENESS; STATES; APPROXIMATION; EXISTENCE;
D O I
10.1016/j.jfa.2018.10.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the dynamics of a heavy quantum tracer particle coupled to a non-relativistic boson field in R-3. The pair interactions of the bosons are of mean-field type, with coupling strength proportional to 1/N, where N is the expected particle number. Assuming that the mass of the tracer particle is proportional to N, we derive generalized Hartree equations in the limit N -> infinity. Moreover, we prove the global well-posedness of the associated Cauchy problem for sufficiently weak interaction potentials. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:971 / 1006
页数:36
相关论文
共 50 条
  • [21] On the mean field limit of the Random Batch Method for interacting particle systems
    Shi Jin
    Lei Li
    Science China Mathematics, 2022, 65 : 169 - 202
  • [22] Eigenfunction Martingale Estimators for Interacting Particle Systems and Their Mean Field Limit
    Pavliotis, Grigorios A.
    Zanoni, Andrea
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2022, 21 (04) : 2338 - 2370
  • [23] Pair Excitations and the Mean Field Approximation of Interacting Bosons, I
    Grillakis, M.
    Machedon, M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 324 (02) : 601 - 636
  • [24] On the mean field limit of the Random Batch Method for interacting particle systems
    Jin, Shi
    Li, Lei
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (01) : 169 - 202
  • [25] A Method of Moments Estimator for Interacting Particle Systems and their Mean Field Limit
    Pavliotis, Grigorios A.
    Zanoni, Andrea
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2024, 12 (02) : 262 - 288
  • [26] Pair excitations and the mean field approximation of interacting Bosons, II
    Grillakis, M.
    Machedon, M.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (01) : 24 - 67
  • [27] Quantum phase transitions in the interacting boson model
    Cejnar, Pavel
    Jolie, Jan
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 62, NO 1, 2009, 62 (01): : 210 - 256
  • [28] A MEAN-FIELD LIMIT OF THE PARTICLE SWARMALATOR MODEL
    Ha, Seung-Yeal
    Jung, Jinwook
    Kim, Jeongho
    Park, Jinyeong
    Zhang, Xiongtao
    KINETIC AND RELATED MODELS, 2021, 14 (03) : 429 - 468
  • [29] Quantum Dynamics with Mean Field Interactions: a New Approach
    László Erdős
    Benjamin Schlein
    Journal of Statistical Physics, 2009, 134 : 859 - 870
  • [30] Mean field dynamics of some open quantum systems
    Merkli, Marco
    Rafiyi, Alireza
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2212):