Nitrogen-doped graphene oxide with enhanced bioelectricity generation from microbial fuel cells for marine sewage treatment

被引:22
|
作者
Li, Peng [1 ]
Li, Xinyi [1 ]
Huang, Jianghua [2 ]
Qu, Wu [1 ]
Pan, Xiuwu [3 ]
Chen, Qinguo [2 ,4 ]
Klemes, Jiri Jaromir [5 ]
Wang, Bohong [2 ]
Wang, Jianxin [1 ]
Tao, Hengcong [2 ]
机构
[1] Zhejiang Ocean Univ, Sch Ocean Sci & Technol, Zhoushan 316022, Peoples R China
[2] Zhejiang Ocean Univ, Sch Petrochem Engn & Environm, Zhoushan 316022, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Med, Shanghai 200030, Peoples R China
[4] Zhejiang Ocean Univ, Zhejiang Key Lab Petrochem Environm Pollut Control, Zhoushan 316022, Peoples R China
[5] Brno Univ Technol VUT Brno, Fac Mech Engn, NETME Ctr, Sustainable Proc Integrat Lab SPIL, Technicka 2896-2, Brno 61669, Czech Republic
基金
中国国家自然科学基金;
关键词
Microbial fuel cell; Graphene; Nitrogen doped; Bacterial communities; AMMONIA-OXIDIZING ARCHAEA; WASTE-WATER TREATMENT; BACTERIAL COMMUNITY; PROVIDES INSIGHTS; POWER-GENERATION; STAINLESS-STEEL; SP NOV; PERFORMANCE; ELECTRICITY; REDUCTION;
D O I
10.1016/j.jclepro.2022.134071
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the increasing demand for clean water and energy, microbial fuel cell (MFC) as a promising technology for obtaining energy from wastewater has attracted great research interest in the last two decades. The performance of the anode electrode is the most critical factor limiting the large-scale application of MFC. Graphene materials as a suitable candidate have been successfully used as the anode due to their excellent biocompatibility and efficient extracellular electron transfer (EET) ability. Here, nitrogen-doped graphene oxide (NGO) was prepared by a simple one-step hydrothermal method. X-ray photoelectron spectroscopy (XPS) was used to analyse the valence states of the surface chemical elements and their associated molecular species. Fourier transform infrared spectroscopy (FTIR) was used to identify the surface functional groups, and Raman spectroscopy was used to analyse the information about surface defects. Cyclic voltammetry (CV) and electrochemical impedance spec-troscopy (EIS) revealed the increased electrochemical activity and rapid EET ability from the NGO electrodes. Scanning electron microscopy demonstrated the two-dimensional layered structure of the NGO with some wrinkled texture. MFCs equipped with the modified NGO anode achieved the highest power density of 708.3 mW/m2 with an output voltage of 498.6 mV in comparison with the other graphene-based electrodes, i.e., graphene and graphene oxide. Moreover, the chemical oxygen demand (COD) removal rate increased signifi-cantly from 18.1% to 45.6%. The analysis of the bacterial community using a high-throughput sequencing indicated that the relative abundance of the electricigens increased on the NGO electrode biofilim, and the relative expression of ccoN gene coding cytochrome-c oxidase (Cco) was markedly up-regulated. These results demonstrated that NGO modification effectively enhanced the bio-electrocatalytic activity of MFC with improved wastewater treatment capacity.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] One-pot Low-temperature Synthesis of Nitrogen-doped Graphene and It Application as Cathode Catalyst in Microbial Fuel Cells for Electricity Generation
    Fu Rongbing
    Yang Lanqin
    Feng Leiyu
    Guo Wei
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2014, 35 (04): : 825 - 830
  • [32] Coupling bioelectricity generation and oil sands tailings treatment using microbial fuel cells
    Jiang, Yaxin
    Ulrich, Ania C.
    Liu, Yang
    BIORESOURCE TECHNOLOGY, 2013, 139 : 349 - 354
  • [33] Electroactive biofilm communities in microbial fuel cells for the synergistic treatment of wastewater and bioelectricity generation
    Mahto, Kumari Uma
    Das, Surajit
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2025, 45 (02) : 434 - 453
  • [34] Microbial fuel cells a state-of-the-art technology for wastewater treatment and bioelectricity generation
    Mohyudin, Sidra
    Farooq, Robina
    Jubeen, Farhat
    Rasheed, Tahir
    Fatima, Masoom
    Sher, Farooq
    ENVIRONMENTAL RESEARCH, 2022, 204
  • [35] Combination of Microbial Fuel Cells with Microalgae Cultivation for Bioelectricity Generation and Domestic Wastewater Treatment
    Jiang, Hai-ming
    ENVIRONMENTAL ENGINEERING SCIENCE, 2017, 34 (07) : 489 - 495
  • [36] Synthesis of nitrogen-doped multilayer graphene from milk powder with melamine and their application to fuel cells
    Zhao, Hong
    Hui, K. S.
    Hui, K. N.
    CARBON, 2014, 76 : 1 - 9
  • [37] Bioelectricity generation by proton exchange membrane-based microbial fuel cell from sewage substrate
    Yadav, Arti
    Parida, Dimpal
    Muralidharan, A.
    Ramya, M.
    CURRENT SCIENCE, 2014, 106 (01): : 29 - 30
  • [38] Application of biocathodes and enrichment strategies as promising alternative for enhanced bioelectricity generation in microbial fuel cells
    Poggi-Varaldo, H. M.
    Ortega Martinez, A.
    Vazquez-Larios, A. L.
    Rindernknecht-Seijas, N. F.
    Vazquez Vazquez, G.
    Solorza-Feria, O.
    NEW BIOTECHNOLOGY, 2009, 25 : S252 - S252
  • [39] Enhanced copper removal and bioelectricity generation in sediment microbial fuel cells through biostimulation and bioaugmentation
    Liu, Shu-Hui
    Huang, Wun-Jie
    Lin, Chi-Wen
    Zhu, Ting-Jun
    JOURNAL OF CLEANER PRODUCTION, 2022, 350
  • [40] Synthesis of nitrogen-doped reduced graphene oxide directly from nitrogen-doped graphene oxide as a high-performance lithium ion battery anode
    Du, Meng
    Sun, Jing
    Chang, Jie
    Yang, Fan
    Shi, Liangjing
    Gao, Lian
    RSC ADVANCES, 2014, 4 (80) : 42412 - 42417