Brownian motion from a deterministic system of particles

被引:2
作者
Ardourel, Vincent [1 ]
机构
[1] Univ Paris 01, IHPST CNRS, 13 Rue 4, F-75006 Paris, France
关键词
Statistical and thermal physics; Lanford's theorem; Memoryless process; Boltzmann equation; Boltzmann-Grad limit; Indeterminism; Langevin equation; Infinite systems; EQUILIBRIUM;
D O I
10.1007/s11229-022-03577-2
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
Can Brownian motion arise from a deterministic system of particles? This paper addresses this question by analysing the derivation of Brownian motion as the limit of a deterministic hard-spheres gas with Lanford's theorem. In particular, we examine the role of the Boltzmann-Grad limit in the loss of memory of the deterministic system and compare this derivation and the derivation of Brownian motion with the Langevin equation.
引用
收藏
页数:15
相关论文
共 35 条
[11]  
Earman J., 1986, A primer on determinism
[12]  
Earman J., 1986, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, V2, P226
[13]  
eif F, 1965, Fundamentals of statistical and thermal physics
[14]  
elson E, 2001, DYNAMICAL THEORIES B, V2nd
[15]  
Frigg R., 2008, The Ashgate Companion to Contemporary Philosophy of Physics, P99
[17]   The concept of velocity in the history of Brownian motion From physics to mathematics and back [J].
Genthon, Arthur .
EUROPEAN PHYSICAL JOURNAL H, 2020, 45 (01) :49-105
[18]  
Golse F, 2014, SEMINAIRE BOURBAKI, P2013
[19]  
Lanford O. E., 1976, Asterisque, V40, P117
[20]  
Lanford O. E. III., 1975, Dynamical Systems, Theory and Applications, P1