Brownian motion from a deterministic system of particles

被引:2
作者
Ardourel, Vincent [1 ]
机构
[1] Univ Paris 01, IHPST CNRS, 13 Rue 4, F-75006 Paris, France
关键词
Statistical and thermal physics; Lanford's theorem; Memoryless process; Boltzmann equation; Boltzmann-Grad limit; Indeterminism; Langevin equation; Infinite systems; EQUILIBRIUM;
D O I
10.1007/s11229-022-03577-2
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
Can Brownian motion arise from a deterministic system of particles? This paper addresses this question by analysing the derivation of Brownian motion as the limit of a deterministic hard-spheres gas with Lanford's theorem. In particular, we examine the role of the Boltzmann-Grad limit in the loss of memory of the deterministic system and compare this derivation and the derivation of Brownian motion with the Langevin equation.
引用
收藏
页数:15
相关论文
共 35 条
[1]   Irreversibility in the Derivation of the Boltzmann Equation [J].
Ardourel, Vincent .
FOUNDATIONS OF PHYSICS, 2017, 47 (04) :471-489
[2]  
azenko G, 2006, NONEQUILIBRIUM STAT
[3]   BROWNIAN-MOTION FROM DETERMINISTIC DYNAMICS [J].
BECK, C .
PHYSICA A, 1990, 169 (02) :324-336
[4]  
Bodineau T., 2018, Ann. Fac. Sci. Toulouse Math., V6, P985
[5]   The Brownian motion as the limit of a deterministic system of hard-spheres [J].
Bodineau, Thierry ;
Gallagher, Isabelle ;
Saint-Raymond, Laure .
INVENTIONES MATHEMATICAE, 2016, 203 (02) :493-553
[6]   Boltzmann's H-theorem, its discontents, and the birth of statistical mechanics [J].
Brown, Harvey R. ;
Myrvold, Wayne ;
Uffink, Jos .
STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2009, 40 (02) :174-191
[7]   Reducing thermodynamics to statistical mechanics: The case of entropy [J].
Callender, C .
JOURNAL OF PHILOSOPHY, 1999, 96 (07) :348-373
[8]  
Damour T., 2006, EINSTEIN 1905 2005 P, P20
[9]  
Degond P, 2004, MODEL SIMUL SCI ENG, P3, DOI 10.1007/978-0-8176-8200-2_1
[10]   A MECHANICAL MODEL OF BROWNIAN-MOTION [J].
DURR, D ;
GOLDSTEIN, S ;
LEBOWITZ, JL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 78 (04) :507-530