Improved quadratic cuts for convex mixed-integer nonlinear programs

被引:15
作者
Su, Lijie [1 ,2 ]
Tang, Lixin [1 ]
Bernal, David E. [3 ]
Grossmann, Ignacio E. [3 ]
机构
[1] Northeastern Univ, Inst Ind & Syst Engn, Shenyang 110819, Liaoning, Peoples R China
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Liaoning, Peoples R China
[3] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
基金
美国安德鲁·梅隆基金会; 中国国家自然科学基金;
关键词
MINLP; Outer Approximation (OA); Quadratic cut; MIQCP; GLOBAL OPTIMIZATION METHOD; OUTER-APPROXIMATION; MINLP OPTIMIZATION; ALPHA-BB; ALGORITHM; BRANCH;
D O I
10.1016/j.compchemeng.2017.10.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents scaled quadratic cuts based on scaling the second-order Taylor expansion terms for the decomposition methods Outer Approximation and Partial Surrogate Cuts for solving convex Mixed Integer Nonlinear Programing problems. The scaled quadratic cut is proved to be a stricter and tighter underestimation for convex nonlinear functions than classical supporting hyperplanes, which results in the improvement of Outer Approximation and Partial Surrogate Cuts based solution methods. We integrate the strategies of scaled quadratic cuts with multi-generation cuts for Outer Approximation and Partial Surrogate Cuts and develop six types of Mixed Integer Nonlinear Programming solution methods with scaled quadratic cuts. These cuts are incorporated in the master problem of the decomposition methods leading to a Mixed Integer Quadratically Constrained Programming problem. Numerical results of benchmark Mixed Integer Nonlinear Programming problems demonstrate the effectiveness of the proposed Mixed Integer Nonlinear Programming solution methods with scaled quadratic cuts. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:77 / 95
页数:19
相关论文
共 34 条
[1]   SCIP: solving constraint integer programs [J].
Achterberg, Tobias .
MATHEMATICAL PROGRAMMING COMPUTATION, 2009, 1 (01) :1-41
[2]   A global optimization method, αBB, for general twice-differentiable constrained NLPs -: I.: Theoretical advances [J].
Adjiman, CS ;
Dallwig, S ;
Floudas, CA ;
Neumaier, A .
COMPUTERS & CHEMICAL ENGINEERING, 1998, 22 (09) :1137-1158
[3]   Second-order cone programming [J].
Alizadeh, F ;
Goldfarb, D .
MATHEMATICAL PROGRAMMING, 2003, 95 (01) :3-51
[4]   alpha BB: A global optimization method for general constrained nonconvex problems [J].
Androulakis, IP ;
Maranas, CD ;
Floudas, CA .
JOURNAL OF GLOBAL OPTIMIZATION, 1995, 7 (04) :337-363
[5]   Mixed-integer nonlinear optimization [J].
Belotti, Pietro ;
Kirches, Christian ;
Leyffer, Sven ;
Linderoth, Jeff ;
Luedtke, James ;
Mahajan, Ashutosh .
ACTA NUMERICA, 2013, 22 :1-131
[6]  
Berthold T., 2012, EXTENDING CIP FRAMEW, P427
[7]  
Biegler L. T., 2010, SIAM 397
[8]  
Bliek C, 2014, P 26 RAMP S, P16
[9]   An algorithmic framework for convex mixed integer nonlinear programs [J].
Bonami, Pierre ;
Biegler, Lorenz T. ;
Conna, Andrew R. ;
Cornuejols, Gerard ;
Grossmann, Ignacio E. ;
Laird, Carl D. ;
Lee, Jon ;
Lodi, Andrea ;
Margot, Francois ;
Sawaya, Nicolas ;
Wachter, Andreas .
DISCRETE OPTIMIZATION, 2008, 5 (02) :186-204
[10]  
Bonami P, 2012, IMA VOL MATH APPL, V154, P1