Physically cross-linked pH-responsive hydrogels with tunable formulations for controlled drug delivery

被引:41
|
作者
Suhag, Deepa [1 ]
Bhatia, Rohan [1 ]
Das, Souvik [1 ]
Shakeel, Adeeba [1 ]
Ghosh, Abhisek [2 ]
Singh, Anirudha [3 ]
Sinha, O. P. [4 ]
Chakrabarti, Sandip [4 ]
Mukherjee, Monalisa [1 ]
机构
[1] Amity Univ Uttar Pradesh, Amity Inst Biotechnol, Biomimet & Nanostruct Mat Res Lab, Noida, India
[2] Indian Inst Technol Delhi, Ctr Biomed Engn, New Delhi 110016, India
[3] Johns Hopkins Sch Med, Dept Urol, Tissue Engn Ctr, Fac Translat, Baltimore, MD USA
[4] Amity Univ Uttar Pradesh, Amity Inst Nanotechnol, Noida, India
关键词
DIMETHYLAMINOETHYL METHACRYLATE; SENSITIVE HYDROGELS; SWELLING BEHAVIOR; ACID) HYDROGELS; IONIC-STRENGTH; ORAL DELIVERY; RELEASE; ABSORPTION; COPOLYMERS; MICELLES;
D O I
10.1039/c5ra07424j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A variety of pH responsive hydrogels possessing macroporous interiors resembling a honey-comb framework with a continuous skin on the surface have been developed by free radical aqueous copolymerization of acrylic acid (AAc) and 2-(dimethylamino) ethyl methacrylate (DMAEMA) (poly(AAc-co-DMAEMA) (PAD) hydrogels). This one step polymerization process makes scaling-up easier for mass production. Our formulations, being devoid of any chemical cross-linkers, remained dimensionally stable in buffer solutions of pH 1.2-7.4 with interlocked nanogels being identified as the building blocks of the network structures. Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), uniaxial compression testing and scanning electron microscopy (SEM) were used to characterize the hydrogels (PADs). Compressive elastic modulus and compressive strength of the swollen hydrogels at pH 7 were found to vary with composition from similar to 3 to similar to 11 kPa and similar to 178 to similar to 206 kPa, respectively. The swollen gels showed fairly strong viscoelastic behaviour and underwent deformation from similar to 70% to 85% before failure, indicating the formation of robust 3D structures of PADs. Preliminary investigation into the biocompatibility of our hydrogels done by cytotoxicity assays using HeLa and McCoy mouse fibroblast cell lines have revealed that they are non-cytotoxic, paving the way for further biomedical applications. Swelling behaviour and release kinetics of bovine serum albumin (BSA) were investigated in various buffer solutions that mimic the pH-metric hierarchy in the gastrointestinal (GI) tract. Equilibrium swelling ratio was found to vary from 171% (mass) to 2027% (mass) depending on the pH and composition of hydrogels. Different compositions of PAD systems were investigated to verify the possibility of tailor-making the drug release behaviour of PAD formations.
引用
收藏
页码:53963 / 53972
页数:10
相关论文
共 50 条
  • [41] pH and reduction dual responsive cross-linked polyurethane micelles as an intracellular drug delivery system
    Yu, Shuangjiang
    He, Chaoliang
    Lv, Qiang
    Sun, Hai
    Chen, Xuesi
    RSC ADVANCES, 2014, 4 (108) : 63070 - 63078
  • [42] pH-Responsive Nanoparticles for Drug Delivery
    Gao, Weiwei
    Chan, Juliana M.
    Farokhzad, Omid C.
    MOLECULAR PHARMACEUTICS, 2010, 7 (06) : 1913 - 1920
  • [43] Injectable and pH-Responsive Silk Nanofiber Hydrogels for Sustained Anticancer Drug Delivery
    Wu, Hongchun
    Liu, Shanshan
    Xiao, Liying
    Dong, Xiaodan
    Lu, Qiang
    Kaplan, David L.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (27) : 17118 - 17126
  • [44] Swelling and Viscoelastic Characterisation of pH-Responsive Chitosan Hydrogels for Targeted Drug Delivery
    Jahren, Susannah L.
    Butler, Michael F.
    Adams, Sarah
    Cameron, Ruth E.
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2010, 211 (06) : 644 - 650
  • [45] Sustained buccal delivery of the hydrophobic drug denbufylline using physically cross-linked palmitoyl glycol chitosan hydrogels
    Martin, L
    Wilson, CG
    Koosha, F
    Uchegbu, IF
    EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2003, 55 (01) : 35 - 45
  • [46] Cross-linked xanthan gum-starch hydrogels as promising materials for controlled drug delivery
    Sethi, Sapna
    Saruchi
    Kaith, Balbir Singh
    Kaur, Mandeep
    Sharma, Neeraj
    Kumar, Vaneet
    CELLULOSE, 2020, 27 (08) : 4565 - 4589
  • [47] Radiation effects on physically cross-linked agarose hydrogels
    Wang Xiao
    Ao Yin-Yong
    Huang Wei
    Liu Bo
    An You
    Zhai Mao-Lin
    NUCLEAR SCIENCE AND TECHNIQUES, 2015, 26 (05)
  • [48] Radiation effects on physically cross-linked agarose hydrogels
    王潇
    敖银勇
    黄玮
    刘波
    安友
    翟茂林
    NuclearScienceandTechniques, 2015, 26 (05) : 50 - 54
  • [49] Mathematical Models for Controlled Drug Release Through pH-Responsive Polymeric Hydrogels
    Manga, Ramya D.
    Jha, Prateek K.
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2017, 106 (02) : 629 - 638
  • [50] Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release
    Zhao, Changwen
    Zhuang, Xiuli
    He, Pan
    Xiao, Chunsheng
    He, Chaoliang
    Sun, Jingru
    Chen, Xuesi
    Jing, Xiabin
    POLYMER, 2009, 50 (18) : 4308 - 4316