High frequency approximation of solutions to critical nonlinear wave equations

被引:321
作者
Bahouri, H [1 ]
Gérard, P
机构
[1] Univ Tunis, Dept Math, Tunis 1060, Tunisia
[2] Univ Paris 11, Dept Math, F-91405 Orsay, France
关键词
D O I
10.1353/ajm.1999.0001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is devoted to the description of bounded energy sequences of solutions to the equation (1) square u + \u\(4) = 0 in R x R-3, up to remainder terms small in energy norm and in every Strichartz norm. The proof relies on scattering theory for (1) and on a structure theorem for bounded energy sequences of solutions to the linear wave equation. In particular, we infer the existence of an a priori estimate of Strichartz norms of solutions to (1) in terms of their energy.
引用
收藏
页码:131 / 175
页数:45
相关论文
共 21 条
[11]  
Kapitanski L, 1994, MATH RES LETT, V1, P211
[12]   ON EXISTENCE AND SCATTERING WITH MINIMAL REGULARITY FOR SEMILINEAR WAVE-EQUATIONS [J].
LINDBLAD, H ;
SOGGE, CD .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (02) :357-426
[13]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P109
[14]   TIME DECAY FOR NONLINEAR KLEIN - GORDON EQUATION [J].
MORAWETZ, CS .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1968, 306 (1486) :291-&
[15]   NONLINEAR SMALL DATA SCATTERING FOR THE WAVE AND KLEIN-GORDON EQUATION [J].
PECHER, H .
MATHEMATISCHE ZEITSCHRIFT, 1984, 185 (02) :261-270
[16]   REGULARITY RESULTS FOR NONLINEAR-WAVE EQUATIONS [J].
SHATAH, J ;
STRUWE, M .
ANNALS OF MATHEMATICS, 1993, 138 (03) :503-518
[17]  
Shatah Jalal, 1994, Internat. Math. Res. Notices, V7, p303ff, DOI DOI 10.1155/S1073792894000346
[18]  
Strauss W. A., 1968, J. Funct. Anal., V2, P409
[19]  
STRUWE M, 1984, MATH Z, V187, P511, DOI 10.1007/BF01174186
[20]  
Struwe M., 1988, Ann. Sc. Norm. Super. Pisa-Cl. Sci, V15, P495