Ideals and quotients of diagonally quasi-symmetric functions

被引:0
作者
Li, Shu Xiao [1 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON, Canada
关键词
POLYNOMIALS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2004, J-C. Aval, F. Bergeron and N. Bergeron studied the algebra of diagonally quasi-symmetric functions DQSym in the ring Q[x,y] with two sets of variables. They made conjectures on the structure of the quotient Q[x,y]/< DQSym(+)>, which is a quasi-symmetric analogue of the diagonal harmonic polynomials. In this paper, we construct a Hilbert basis for this quotient when there are infinitely many variables i.e. x = x(1),x(2), and y = y(1),y(2), Then we apply this construction to the case where there are finitely many variables, and compute the second column of its Hilbert matrix.
引用
收藏
页数:14
相关论文
共 16 条
[1]   Combinatorial Hopf algebras and generalized Dehn-Sommerville relations [J].
Aguiar, M ;
Bergeron, N ;
Sottile, F .
COMPOSITIO MATHEMATICA, 2006, 142 (01) :1-30
[2]  
[Anonymous], 2008, U LECT SERIES
[3]  
Artin E., 1944, Notre Dame Mathematical Lectures, V2
[4]   Ideals of quasi-symmetric functions and super-covariant polynomials for Sn [J].
Aval, JC ;
Bergeron, F ;
Bergeron, N .
ADVANCES IN MATHEMATICS, 2004, 181 (02) :353-367
[5]   Catalan paths and quasi-symmetric functions [J].
Aval, JC ;
Bergeron, N .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (04) :1053-1062
[6]   Lattice diagram polynomials and extended Pieri Rules [J].
Bergeron, F ;
Bergeron, N ;
Garsia, AM ;
Haiman, M ;
Tesler, G .
ADVANCES IN MATHEMATICS, 1999, 142 (02) :244-334
[7]  
Bergeron F., 1999, Methods Appl. Anal., V6, P363
[8]   A GRADED REPRESENTATION MODEL FOR MACDONALDS POLYNOMIALS [J].
GARSIA, AM ;
HAIMAN, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (08) :3607-3610
[9]   NONCOMMUTATIVE SYMMETRICAL FUNCTIONS [J].
GELFAND, IM ;
KROB, D ;
LASCOUX, A ;
LECLERC, B ;
RETAKH, VS ;
THIBON, JY .
ADVANCES IN MATHEMATICS, 1995, 112 (02) :218-348
[10]  
Gessel IM., 1984, CONT MATH, V34, P289