Changes in electricity production and microbial community evolution constructed wetland -microbial fuel cell exposed to wastewater containing Pb(II)

被引:57
作者
Zhao, CongCong [1 ]
Shang, DaWei [1 ,2 ]
Zou, YanLing [1 ,2 ]
Du, YuanDa [1 ]
Wang, Qian [1 ]
Xu, Fei [1 ]
Ren, Liang [4 ]
Kong, Qiang [1 ,3 ]
机构
[1] Shandong Normal Univ, Collaborat Innovat Ctr Human Nat & Green Dev Univ, Coll Geog & Environm, Jinan 250014, Peoples R China
[2] Shandong Normal Univ, Inst Environm & Ecol, Jinan 255014, Peoples R China
[3] Natl Univ Singapore, Dept Civil & Environm Engn, Singapore 117576, Singapore
[4] Jiangsu CRRC Environm CO LTD, Changzhou 215557, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
BIOELECTRICITY GENERATION; BACTERIAL COMMUNITY; LEAD RESISTANCE; AZO-DYE; REMOVAL; DEGRADATION; DENITRIFICATION; INTERFERENCE; ACCUMULATION; BIOSORPTION;
D O I
10.1016/j.scitotenv.2020.139127
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Two constructed wetland microbial fuel cell (CW-MFC) devices, experimental group (EG, with 5 mg/L Pb(II) addition) and control group (CG) were built to explore the changes in power generation, wastewater purification and microbial community structure under Pb(II) stress. The voltage of EG (343.16 ± 12.14 mV) was significantly higher (p < 0.01) than that of CG (295.49 ± 13.91 mV), and the highest power density of the EG and CG were 7.432 mW·m−2 and 3.873 mW·m−2, respectively. There was no significant difference in the removal of common pollutants between these groups except for the NH4 +-N removal efficiency, which was probably caused by the inhibition of the bioactivity of Comamonas (AOB) in the anode of the experimental group by Pb(II). Pb(II) was effectively removed by CW-MFC (84.86 ± 3%), and the abundant amount of fulvic acid-like matter in the extracellular polymeric substance (EPS) of the EG contributed to its removal. The presence of Pb(II) had a negative effect on both microbial community diversity and species richness. The abundance of a lead resistance gene, pbrT, decreased with long-term Pb(II) pressure. This is evidence of microbial adaptation to Pb(II). © 2020 Elsevier B.V.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Degradation of nitrobenzene-containing wastewater by a microbial-fuel-cell-coupled constructed wetland
    Xie, Tingyu
    Jing, Zhaoqian
    Hu, Jing
    Yuan, Peng
    Liu, Yali
    Cao, Shiwei
    ECOLOGICAL ENGINEERING, 2018, 112 : 65 - 71
  • [12] Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions
    Fang, Zhou
    Song, Hai-liang
    Cang, Ning
    Li, Xian-ning
    BIOSENSORS & BIOELECTRONICS, 2015, 68 : 135 - 141
  • [13] Operation mechanism of constructed wetland-microbial fuel cells for wastewater treatment and electricity generation: A review
    Wang, Wenjing
    Zhang, Yu
    Li, Mengxiang
    Wei, Xiaogang
    Wang, Yali
    Liu, Ling
    Wang, Hongjie
    Shen, Shigang
    BIORESOURCE TECHNOLOGY, 2020, 314
  • [14] Advancement in constructed wetland microbial fuel cell process for wastewater treatment and electricity generation: a review
    Bhaduri, Soumyadeep
    Behera, Manaswini
    Environmental Science and Pollution Research, 2024, 31 (38) : 50056 - 50075
  • [15] Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal
    Yadav, Asheesh Kumar
    Dash, Purnanjali
    Mohanty, Ayusman
    Abbassi, Rouzbeh
    Mishra, Barada Kanta
    ECOLOGICAL ENGINEERING, 2012, 47 : 126 - 131
  • [16] Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process
    Liu, Feng
    Sun, Lei
    Wan, Jinbao
    Shen, Liang
    Yu, Yanhong
    Hu, Lingling
    Zhou, Ying
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2020, 89 : 252 - 263
  • [17] The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland
    Srivastava, Pratiksha
    Yadav, Asheesh Kumar
    Mishra, Barada Kanta
    BIORESOURCE TECHNOLOGY, 2015, 195 : 223 - 230
  • [18] Insights into the decolorization of mono and diazo dyes in single and binary dyes containing wastewater and electricity generation in up-flow constructed wetland coupled microbial fuel cell
    Teoh, Tean-Peng
    Ong, Soon-An
    Ho, Li-Ngee
    Wong, Yee-Shian
    Lutpi, Nabilah Aminah
    Oon, Yoong-Ling
    Tan, Sing-Mei
    Ong, Yong-Por
    Yap, Kea-Lee
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (07) : 17546 - 17563
  • [19] Constructed Wetland Coupled Microbial Fuel Cell: A Clean Technology for Sustainable Treatment of Wastewater and Bioelectricity Generation
    Kesarwani, Shiwangi
    Panwar, Diksha
    Mal, Joyabrata
    Pradhan, Nirakar
    Rani, Radha
    FERMENTATION-BASEL, 2023, 9 (01):
  • [20] Improving the Performance of Constructed Wetland Microbial Fuel Cell (CW-MFC) for Wastewater Treatment and Electricity Generation
    Abdulwahab, Yussur D.
    Mohammed, Alaa Kareem
    Abbas, Talib R.
    BAGHDAD SCIENCE JOURNAL, 2021, 18 (01) : 7 - 17