The type II O-antigenic polysaccharide moiety of Burkholderia pseudomallei lipopolysaccharide is required for serum resistance and virulence

被引:176
|
作者
DeShazer, D [1 ]
Brett, PJ [1 ]
Woods, DE [1 ]
机构
[1] Univ Calgary, Hlth Sci Ctr, Dept Microbiol & Infect Dis, Calgary, AB T2N 4N1, Canada
关键词
D O I
10.1046/j.1365-2958.1998.01139.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Melioidosis, an infection caused by the Gram-negative bacterial pathogen Burkholderia pseudomallei, is endemic in south-east Asia and northern Australia, Acute septicaemic melioidosis is a major cause of morbidity and mortality, especially in north-east Thailand. B. pseudomallei is highly resistant to the bactericidal activity of normal human serum (NHS), and we have found that B. pseudomallei 1026b multiplies in 10-30% NHS. We developed a simple screen for the identification of serum-sensitive mutants based on this novel phenotype. Approximately 1200 Tn5-OT182 mutants were screened, and three serum-sensitive mutants were identified. The type II O-antigenic polysaccharide (O-PS) moiety of lipopolysaccharide was not present in the serum-sensitive mutants. A representative serum-sensitive mutant, SRM117, was killed by the alternative pathway of complement and was less virulent than 1026b in three animal models of melioidosis. The Tn5-OT182 integrations in the serum-sensitive mutants were physically linked on the B. pseudomallei chromosome, and further genetic analysis of this locus revealed a cluster of 15 genes required for type II O-PS production. The proteins encoded by these genes were similar to proteins involved in bacterial polysaccharide biosynthesis. The results presented here demonstrate that type II O-PS is essential for B. pseudomallei serum resistance and virulence.
引用
收藏
页码:1081 / 1100
页数:20
相关论文