Wide spectrum responsivity detectors from visible to mid-infrared based on antimonide

被引:4
作者
Guo, Chunyan [1 ,2 ,4 ]
Sun, Yaoyao [3 ,4 ]
Jia, Qingxuan [3 ,4 ]
Jiang, Zhi [3 ,4 ]
Jiang, Dongwei [3 ,4 ]
Wang, Guowei [3 ,4 ]
Xu, Yingqiang [3 ,4 ]
Wang, Tao [1 ]
Tian, Jinshou [1 ]
Wu, Zhaoxin [2 ]
Niu, Zhichuan [3 ,4 ]
机构
[1] Chinese Acad Sci, Key Lab Ultra Fast Photoelect Diagnost Technol, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Xian 710049, Shaanxi, Peoples R China
[3] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
[4] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
关键词
Wide spectrum infrared detector; InAs/GaSb type-II superlattices (T2SLs); Photon traps (PTs) array; INFRARED DETECTION; HIGH-PERFORMANCE; PHOTODETECTORS; SUPERLATTICES;
D O I
10.1016/j.infrared.2018.10.037
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A kind of wide spectrum Infrared detectors based on InAs/GaSb type-II superlattices (T2SLs) operating from 0.5 mu m to 5 mu m wavelength range is reported. The materials were grown by Molecular Beam Epitaxy (MBE) on GaSb substrates. Diverse types and sizes microstructure are fabricated on the surface of the detector to form the photon traps (PTs) array. PTs decrease the reflectivity and increase the light absorption of epitaxial material. Compared with the planar mesa detectors without antireflection (AR) film, detectors with PTs array exhibits a high responsivity of 0.86 A/W at 1160 nm and maximum D-star reaches to 10(9) cm Hz(1/2)/W in visible wavelength. Also, the PTs processed on detector augment spectral response and QE in infrared wavelength. The peak responsivity of the detector with PTs is to 1.35 A/W and QE can exceed to 0.76 in the infrared wavelength. The infrared detector with PTs is attractive for numerous applications.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 38 条
[1]  
Abedin M. N., 2005, P SOC PHOTO-OPT INS, P5883
[2]   Multicolor focal plane array detector technology: A review [J].
Abedin, MN ;
Refaat, TF ;
Zawodny, J ;
Sandford, SP ;
Singh, UN ;
Bandra, S ;
Gunapala, SD ;
Bhat, I ;
Barnes, NP .
INFRARED SPACEBORNE REMOTE SENSING XI, 2003, 5152 :279-288
[3]   Performance of mid-wave T2SL detectors with heterojunction barriers [J].
Asplund, Carl ;
von Wurtemberg, Rickard Marcks ;
Lantz, Dan ;
Malm, Hedda ;
Martijn, Henk ;
Plis, Elena ;
Gautam, Nutan ;
Krishna, Sanjay .
INFRARED PHYSICS & TECHNOLOGY, 2013, 59 :22-27
[4]  
Bucher E., 1992, PHOTOVOLTAIC PROPERT
[5]   EPITAXY BY PERIODIC ANNEALING [J].
CHO, AY .
SURFACE SCIENCE, 1969, 17 (02) :494-&
[6]   Resonant structures for infrared detection [J].
Choi, K. K. ;
Allen, S. C. ;
Sun, J. G. ;
Wei, Y. ;
Olver, K. A. ;
Fu, R. X. .
APPLIED OPTICS, 2017, 56 (03) :B26-B36
[7]   Electromagnetic Modeling and Design of Quantum Well Infrared Photodetectors [J].
Choi, Kwong-Kit ;
Jhabvala, Murzy D. ;
Forrai, David P. ;
Waczynski, Augustyn ;
Sun, Jason ;
Jones, Robert .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2013, 19 (05)
[8]   Spectral response of blue-sensitive Si photodetectors in SOI [J].
Chu, J. ;
Han, Z. ;
Meng, F. ;
Wang, Z. .
SOLID-STATE ELECTRONICS, 2011, 55 (01) :54-58
[9]   Design of mid-infrared InAs/GaSb superlattice detectors for room temperature operation [J].
Cuminal, Y. ;
Rodriguez, J. B. ;
Christol, P. .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2008, 44 (9-10) :611-616
[10]   A Novel Stress Characterization Technique for the Development of Low-Stress Ohmic Contacts to HgCdTe [J].
D'Orsogna, D. ;
Lamarre, P. ;
Bellotti, E. ;
Barbone, P. E. ;
Smith, F. ;
Fulk, C. ;
Lovecchio, P. ;
Reine, M. B. ;
Tobin, S. P. ;
Markunas, J. .
JOURNAL OF ELECTRONIC MATERIALS, 2009, 38 (08) :1698-1706