Key Soybean Seedlings Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome Analyses of Two Cultivars

被引:25
|
作者
Xuan, Huidong [1 ]
Huang, Yanzhong [1 ]
Zhou, Li [1 ]
Deng, Sushuang [1 ]
Wang, Congcong [1 ]
Xu, Jianyu [1 ]
Wang, Haitang [1 ]
Zhao, Jinming [1 ]
Guo, Na [1 ]
Xing, Han [1 ]
机构
[1] Nanjing Agr Univ, Coll Agr, Natl Ctr Soybean Improvement,State Key Lab Crop G, Key Lab Biol & Genet & Breeding Soybean,Minist Ag, Nanjing 210095, Peoples R China
基金
中国国家自然科学基金;
关键词
Glycine max [L; Merr; seedling stage; drought stress; RNA-seq; signal transduction pathways; STRESS TOLERANCE; RECEPTOR KINASE; PROTEIN-KINASE; NICOTIANA-BENTHAMIANA; SIGNAL-TRANSDUCTION; ABIOTIC STRESS; EXPRESSION; ACID; GENOTYPES; SEQUENCE;
D O I
10.3390/ijms23052893
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Seedling drought stress is one of the most important constraints affecting soybean yield and quality. To unravel the molecular mechanisms under soybean drought tolerance, we conducted comprehensive comparative transcriptome analyses of drought-tolerant genotype Jindou 21 (JD) and drought-sensitive genotype Tianlong No.1 (N1) seedlings that had been exposed to drought treatment. A total of 6038 and 4112 differentially expressed genes (DEGs) were identified in drought-tolerant JD and drought-sensitive N1, respectively. Subsequent KEGG pathway analyses showed that numerous DEGs in JD are predominately involved in signal transduction pathways, including plant hormone signaling pathway, calcium signaling pathway, and MAPK signaling pathway. Interestingly, JA and BR plant hormone signal transduction pathways were found specifically participating in drought-tolerant JD. Meanwhile, the differentially expressed CPKs, CIPKs, MAPKs, and MAP3Ks of calcium and MAPK signaling pathway were only identified in JD. The number of DEGs involved in transcription factors (TFs) is larger in JD than that of in N1. Moreover, some differently expressed transcriptional factor genes were only identified in drought-tolerant JD, including FAR1, RAV, LSD1, EIL, and HB-PHD. In addition, this study suggested that JD could respond to drought stress by regulating the cell wall remodeling and stress-related protein genes such as EXPs, CALSs, CBPs, BBXs, and RD22s. JD is more drought tolerant than N1 owing to more DEGs being involved in multiple signal transduction pathways (JA, BR, calcium, MAPK signaling pathway), stress-related TFs, and proteins. The above valuable genes and pathways will deepen the understanding of the molecular mechanisms under drought stress in soybean.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Crucial Waterlogging-Responsive Genes and Pathways Revealed by Comparative Physiology and Transcriptome in Tropical and Temperate Maize (Zea mays L.) inbred Lines
    Yao, Qilun
    JOURNAL OF PLANT BIOLOGY, 2021, 64 (04) : 313 - 325
  • [42] Comparative transcriptome combined with physiological analyses revealed key genes and pathways for cadmium tolerance in wild-type and mutant microalgae Dunaliella salina
    Zhu, Qingling
    Wu, Mingxu
    Xiao, Jiayuan
    Gao, Lu
    Song, Rujing
    Yang, Zhili
    Xia, Liping
    Zheng, Jialang
    Liu, Jianhua
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2024, 79
  • [43] Comparative physiological, transcriptomic, and WGCNA analyses reveal the key genes and regulatory pathways associated with drought tolerance in Tartary buckwheat
    Meng, Heng-Ling
    Sun, Pei-Yuan
    Wang, Jia-Rui
    Sun, Xiao-Qian
    Zheng, Chuan-Zhi
    Fan, Ting
    Chen, Qing-Fu
    Li, Hong-You
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [44] Unravelling the treasure trove of drought-responsive genes in wild-type peanut through transcriptomics and physiological analyses of root
    Feba Jacob Thoppurathu
    Zahra Ghorbanzadeh
    Ashish Kumar Vala
    Rasmieh Hamid
    Meera Joshi
    Functional & Integrative Genomics, 2022, 22 : 215 - 233
  • [45] Gene expression analysis of potato drought-responsive genes under drought stress in potato (Solanum tuberosum L.) cultivars
    Celik, Sadettin
    PEERJ, 2024, 12
  • [46] RNAseq analysis reveals drought-responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat
    Iquebal, Asif
    Sharma, Pradeep
    Jasrotia, Rahul Singh
    Jaiswal, Sarika
    Kaur, Amandeep
    Saroha, Monika
    Angadi, U. B.
    Sheoran, Sonia
    Singh, Rajender
    Singh, G. P.
    Rai, Anil
    Tiwari, Ratan
    Kumar, Dinesh
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [47] Differential Expression of Two-Component System-Related Drought-Responsive Genes in Two Contrasting Drought-Tolerant Soybean Cultivars DT51 and MTD720 Under Well-Watered and Drought Conditions
    Nguyen Binh Anh Thu
    Xuan Lan Thi Hoang
    Thuy-Dung Ho Nguyen
    Nguyen Phuong Thao
    Lam-Son Phan Tran
    PLANT MOLECULAR BIOLOGY REPORTER, 2015, 33 (05) : 1599 - 1610
  • [48] Transcriptome Sequencing of Chickpea (Cicer arietinum L.) Genotypes for Identification of Drought-Responsive Genes Under Drought Stress Condition
    Kumar, Manoj
    Chauhan, Abhishek Singh
    Kumar, Manoj
    Yusuf, Mohd Aslam
    Sanyal, Indraneel
    Chauhan, Puneet Singh
    PLANT MOLECULAR BIOLOGY REPORTER, 2019, 37 (03) : 186 - 203
  • [49] Comparative Transcriptome Analysis Reveals Different Low-Nitrogen-Responsive Genes in Pepper Cultivars
    Wang, Chunping
    Li, Yifei
    Bai, Wenqin
    Yang, Xiaomiao
    Wu, Hong
    Lei, Kairong
    Huang, Renzhong
    Zhang, Shicai
    Huang, Qizhong
    Lin, Qing
    HORTICULTURAE, 2021, 7 (05)
  • [50] De novo transcriptome sequencing and analysis of salt-, alkali-, and drought-responsive genes inSophora alopecuroides
    Yan, Fan
    Zhu, Youcheng
    Zhao, Yanan
    Wang, Ying
    Li, Jingwen
    Wang, Qingyu
    Liu, Yajing
    BMC GENOMICS, 2020, 21 (01)