Bi-Lipschitz geometry of weighted homogeneous surface singularities

被引:10
作者
Birbrair, Lev [2 ]
Fernandes, Alexandre [2 ]
Neumann, Walter D. [1 ]
机构
[1] Columbia Univ, Barnard Coll, Dept Math, New York, NY 10027 USA
[2] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
基金
美国国家科学基金会;
关键词
14B05; 14J17; 32S25;
D O I
10.1007/s00208-008-0225-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a weighted homogeneous complex surface singularity is metrically conical (i.e., bi-Lipschitz equivalent to a metric cone) only if its two lowest weights are equal. We also give an example of a pair of weighted homogeneous complex surface singularities that are topologically equivalent but not bi-Lipschitz equivalent.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 5 条
[1]  
BIRBRAIR L, ARXIV08040194
[2]  
BIRBRAIR L, COMM PURE A IN PRESS
[3]   SIMPLICIAL DIFFERENTIAL FORMS WITH POLES [J].
BRASSELET, JP ;
GORESKY, M ;
MACPHERSON, R .
AMERICAN JOURNAL OF MATHEMATICS, 1991, 113 (06) :1019-1052
[4]  
NEUMANN W, 1983, BRANDEIS LECT NOTES, V2
[5]   THE GEOMETRIES OF 3-MANIFOLDS [J].
SCOTT, P .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1983, 15 (SEP) :401-487