Symmetry-broken dissipative exchange flows in thin-film ferromagnets with in-plane anisotropy

被引:23
作者
Iacocca, Ezio [1 ,2 ]
Silva, T. J. [3 ]
Hoefer, Mark A. [1 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Chalmers Univ Technol, Dept Phys, Div Theoret Phys, S-41296 Gothenburg, Sweden
[3] NIST, Boulder, CO 80305 USA
基金
瑞典研究理事会;
关键词
MAGNETIC DROPLET SOLITONS; EXCITATION; DRIVEN; WAVES;
D O I
10.1103/PhysRevB.96.134434
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Planar ferromagnetic channels have been shown to theoretically support a long-range ordered and coherently precessing state where the balance between local spin injection at one edge and damping along the channel establishes a dissipative exchange flow, sometimes referred to as a spin superfluid. However, realistic materials exhibit in-plane anisotropy, which breaks the axial symmetry assumed in current theoretical models. Here, we study dissipative exchange flows in a ferromagnet with in-plane anisotropy from a dispersive hydrodynamic perspective. Through the analysis of a boundary value problem for a damped sine-Gordon equation, dissipative exchange flows in a ferromagnetic channel can be excited above a spin current threshold that depends on material parameters and the length of the channel. Symmetry-broken dissipative exchange flows display harmonic overtones that redshift the fundamental precessional frequency and lead to a reduced spin pumping efficiency when compared to their symmetric counterpart. Micromagnetic simulations are used to verify that the analytical results are qualitatively accurate, even in the presence of nonlocal dipole fields. Simulations also confirm that dissipative exchange flows can be driven by spin transfer torque in a finite-sized region. These results delineate the important material parameters that must be optimized for the excitation of dissipative exchange flows in realistic systems.
引用
收藏
页数:8
相关论文
共 34 条
[1]  
[Anonymous], SPIN CURRENT
[2]  
Awad AA, 2017, NAT PHYS, V13, P292, DOI [10.1038/nphys3927, 10.1038/NPHYS3927]
[3]   Equilibrium spin currents and the magnetoelectric effect in magnetic nanostructures [J].
Bruno, P ;
Dugaev, VK .
PHYSICAL REVIEW B, 2005, 72 (24)
[4]   Nonlocal transport mediated by spin supercurrents [J].
Chen, Hua ;
Kent, Andrew D. ;
MacDonald, Allan H. ;
Sodemann, Inti .
PHYSICAL REVIEW B, 2014, 90 (22)
[5]   Magnetic droplet nucleation boundary in orthogonal spin-torque nano-oscillators [J].
Chung, Sunjae ;
Eklund, Anders ;
Iacocca, Ezio ;
Mohseni, Seyed Majid ;
Sani, Sohrab R. ;
Bookman, Lake ;
Hoefer, Mark A. ;
Dumas, Randy K. ;
Akerman, Johan .
NATURE COMMUNICATIONS, 2016, 7
[6]   Nanoconstriction-based spin-Hall nano-oscillator [J].
Demidov, V. E. ;
Urazhdin, S. ;
Zholud, A. ;
Sadovnikov, A. V. ;
Demokritov, S. O. .
APPLIED PHYSICS LETTERS, 2014, 105 (17)
[7]  
Demidov VE, 2012, NAT MATER, V11, P1028, DOI [10.1038/NMAT3459, 10.1038/nmat3459]
[8]   Spin-Wave-Mode Coexistence on the Nanoscale: A Consequence of the Oersted-Field-Induced Asymmetric Energy Landscape [J].
Dumas, Randy K. ;
Iacocca, E. ;
Bonetti, S. ;
Sani, S. R. ;
Mohseni, S. M. ;
Eklund, A. ;
Persson, J. ;
Heinonen, O. ;
Akerman, Johan .
PHYSICAL REVIEW LETTERS, 2013, 110 (25)
[9]  
Getzlaff M., 2008, Fundamentals of Magnetism
[10]   Theory for a dissipative droplet soliton excited by a spin torque nanocontact [J].
Hoefer, M. A. ;
Silva, T. J. ;
Keller, Mark W. .
PHYSICAL REVIEW B, 2010, 82 (05)