On the Functional Independence of Zeta-Functions of Certain Cusp Forms

被引:1
作者
Laurincikas, A. [1 ]
机构
[1] Vilnius Univ, Inst Math, LT-03225 Vilnius, Lithuania
关键词
zeta-function of a cusp form; functional independence; Hecke eigen-cusp form; universality; UNIVERSALITY;
D O I
10.1134/S0001434620030281
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The zeta-function zeta(s, F), s = sigma + it of a cusp form F of weight kappa in the half-plane sigma > (kappa + 1)/2 is defined by the Dirichlet series whose coefficients are the coefficients of the Fourier series of the form F. The compositions V(zeta(s,F)) with an operator V on the space of analytic functions are considered, and the functional independence of these compositions for certain classes of operators V is proved.
引用
收藏
页码:609 / 617
页数:9
相关论文
共 15 条
  • [1] Hilbert D, 1969, HILBERTS PROBLEMS
  • [2] Holder O., 1887, Math. Ann., V28, P1, DOI 10.1007/BF02430507
  • [3] The universality of zeta-functions attached to certain cusp forms
    Laurincikas, A
    Matsumoto, K
    [J]. ACTA ARITHMETICA, 2001, 98 (04) : 345 - 359
  • [4] LAURINCIKAS A, 2003, IZV MATH+, V67, P83
  • [5] Laurincikas A, 2013, OSAKA J MATH, V50, P1021
  • [6] Laurinikas A., 1996, LIMIT THEOREMS RIEMA
  • [7] Mordykhai-Boltovskoi D., 1914, Izv. Politekh. Inst. Warsaw, V2, P1
  • [8] On the Dirichlet's series and algebraic differential equations
    Ostrowski, A
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1920, 8 : 241 - 298
  • [9] POSTNIKOV AG, 1956, DOKL AKAD NAUK SSSR+, V107, P512
  • [10] POSTNIKOV AG, 1949, DOKL AKAD NAUK SSSR+, V66, P561