On the Semitotal Forcing Number of a Graph

被引:2
作者
Chen, Qin [1 ]
机构
[1] China Jiliang Univ, Coll Sci, Hangzhou 310018, Peoples R China
关键词
Semitotal forcing; Semitotal forcing set; Cubic graph; Petersen graph; TOTAL DOMINATION;
D O I
10.1007/s40840-021-01236-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Zero forcing is an iterative graph coloring process that starts with a subset S of "colored" vertices, all other vertices being "uncolored". At each step, a colored vertex with a unique uncolored neighbor forces that neighbor to be colored. If at the end of the forcing process all the vertices of the graph are colored, then the initial set S is called a zero forcing set. If in addition, every vertex in S is within distance 2 of another vertex of S, then S is a semitotal forcing set. The semitotal forcing number F-t2(G) of a graph G is the cardinality of the smallest semitotal forcing set of G. In this paper, we begin to study basic properties of F-t2(G), relate F-t2(G) to other domination parameters, and establish bounds on the effects of edge operations on the semitotal forcing number. We also investigate the semitotal forcing number for subfamilies of cubic graphs.
引用
收藏
页码:1409 / 1424
页数:16
相关论文
共 50 条
  • [21] Semitotal Domination in Claw-Free Cubic Graphs
    Enqiang Zhu
    Zehui Shao
    Jin Xu
    Graphs and Combinatorics, 2017, 33 : 1119 - 1130
  • [22] Packing chromatic number, (1,1,2,2)-colorings, and characterizing the Petersen graph
    Bresar, Bostjan
    Klavzar, Sandi
    Rall, Douglas F.
    Wash, Kirsti
    AEQUATIONES MATHEMATICAE, 2017, 91 (01) : 169 - 184
  • [23] BOUNDS FOR THE m-ETERNAL DOMINATION NUMBER OF A GRAPH
    Henning, Michael A.
    Klostermeyer, William F.
    Macgillivray, Gary
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 12 (02) : 91 - 103
  • [24] A new lower bound on the total domination number of a graph
    Hajian, Majid
    Henning, Michael A.
    Rad, Nader Jafari
    QUAESTIONES MATHEMATICAE, 2023, 46 (01) : 35 - 48
  • [25] Packing chromatic number under local changes in a graph
    Bresar, Bostjan
    Klavzar, Sandi
    Rall, Douglas F.
    Washe, Kirsti
    DISCRETE MATHEMATICS, 2017, 340 (05) : 1110 - 1115
  • [26] k-tuple total domatic number of a graph
    Sheikholeslami, S. M.
    Volkmann, L.
    UTILITAS MATHEMATICA, 2014, 95 : 189 - 197
  • [27] A lower bound for the complex flow number of a graph: A geometric approach
    Mattiolo, Davide
    Mazzuoccolo, Giuseppe
    Rajnik, Jozef
    Tabarelli, Gloria
    JOURNAL OF GRAPH THEORY, 2024, 106 (02) : 239 - 256
  • [28] A linear-time algorithm for semitotal domination in strongly chordal graphs
    Tripathi, Vikash
    Pandey, Arti
    Maheshwari, Anil
    DISCRETE APPLIED MATHEMATICS, 2023, 338 : 77 - 88
  • [29] PERFECT MATCHING INDEX VERSUS CIRCULAR FLOW NUMBER OF A CUBIC GRAPH
    Macajova, Edita
    Skoviera, Martin
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (02) : 1287 - 1297
  • [30] On matching number, decomposition and rep resentation of well-formed graph
    Nieva, Alex Ralph B.
    Nocum, Karen P.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2023, 11 (02) : 501 - 510