Knowledge graph-based rich and confidentiality preserving Explainable Artificial Intelligence (XAI)

被引:28
作者
Rozanec, Joze M. [1 ,2 ,3 ]
Fortuna, Blaz [1 ,2 ]
Mladenic, Dunja [1 ]
机构
[1] Jozef Stefan Inst, Jamova 39, Ljubljana 1000, Slovenia
[2] Qlector Doo, Rovsnikova 7, Ljubljana 1000, Slovenia
[3] Jozef Stefan Int Postgrad Sch, Jamova 39, Ljubljana 1000, Slovenia
基金
欧盟地平线“2020”;
关键词
Explainable Artificial Intelligence; Knowledge Graph; Demand forecasting; Smart manufacturing; Confidentiality; Privacy; DEMAND; FORECASTS; ONTOLOGY;
D O I
10.1016/j.inffus.2021.11.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper proposes a novel architecture for explainable artificial intelligence based on semantic technologies and artificial intelligence. We tailor the architecture for the domain of demand forecasting and validate it on a real-world case study. The explanations provided result from knowledge fusion regarding concepts describing features relevant to a particular forecast, related media events, and metadata regarding external datasets of interest. The Knowledge Graph enhances the quality of explanations by informing concepts at a higher abstraction level rather than specific features. By doing so, explanations avoid exposing sensitive details regarding the demand forecasting models, thus preserving confidentiality. In addition, the Knowledge Graph enables linking domain knowledge, forecasted values, and forecast explanations while also providing insights into actionable aspects on which users can take action. The ontology and dataset we developed for this use case are publicly available for further research.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 50 条
[41]   Explainable Artificial Intelligence (XAI) 2.0: A manifesto of open challenges and interdisciplinary research directions [J].
Longo, Luca ;
Brcic, Mario ;
Cabitza, Federico ;
Choi, Jaesik ;
Confalonieri, Roberto ;
Del Ser, Javier ;
Guidotti, Riccardo ;
Hayashi, Yoichi ;
Herrera, Francisco ;
Holzinger, Andreas ;
Jiang, Richard ;
Khosravi, Hassan ;
Lecue, Freddy ;
Malgieri, Gianclaudio ;
Paez, Andres ;
Samek, Wojciech ;
Schneider, Johannes ;
Speith, Timo ;
Stumpf, Simone .
INFORMATION FUSION, 2024, 106
[42]   Improving Transparency and Explainability of Deep Learning based IoT Botnet Detection using Explainable Artificial Intelligence (XAI) [J].
Kalakoti, Rajesh ;
Mi, Sven ;
Bahsi, Hayretdin .
22ND IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA 2023, 2023, :595-601
[43]   What do we want from Explainable Artificial Intelligence (XAI)? - A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research [J].
Langer, Markus ;
Oster, Daniel ;
Speith, Timo ;
Hermanns, Holger ;
Kaestner, Lena ;
Schmidt, Eva ;
Sesing, Andreas ;
Baum, Kevin .
ARTIFICIAL INTELLIGENCE, 2021, 296
[44]   Knowledge Graph-based Genetic Fuzzy Agent for Human Intelligence and Machine Co-Learning [J].
Lee, Chang-Shing ;
Wang, Mei-Hui ;
Chen, Chih-Yu ;
Reformat, Marek ;
Nojima, Yusuke ;
Kubota, Naoyuki .
2023 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, FUZZ, 2023,
[45]   Application of Example-Based Explainable Artificial Intelligence (XAI) for Analysis and Interpretation of Medical Imaging: A Systematic Review [J].
Fontes, Miguel ;
de Almeida, Joao Dallyson Sousa ;
Cunha, Antonio .
IEEE ACCESS, 2024, 12 :26419-26427
[46]   Application of deep learning and explainable artificial intelligence (XAI) for detecting red chilli powder adulteration [J].
Brar, Dilpreet Singh ;
Singh, Birmohan ;
Nanda, Vikas .
JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2025, 146
[47]   Interpretable Machine Learning Models for Malicious Domains Detection Using Explainable Artificial Intelligence (XAI) [J].
Aslam, Nida ;
Khan, Irfan Ullah ;
Mirza, Samiha ;
AlOwayed, Alanoud ;
Anis, Fatima M. ;
Aljuaid, Reef M. ;
Baageel, Reham .
SUSTAINABILITY, 2022, 14 (12)
[48]   Explainable artificial intelligence (XAI): How to make image analysis deep learning models transparent [J].
Song, Haekang ;
Kim, Sungho .
2022 22ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2022), 2022, :1595-1598
[49]   Predicting wildfire ignition causes in Southern France using eXplainable Artificial Intelligence (XAI) methods [J].
Bountzouklis, Christos ;
Fox, Dennis M. ;
Di Bernardino, Elena .
ENVIRONMENTAL RESEARCH LETTERS, 2023, 18 (04)
[50]   An Efficient EPReLU-CSGNN-MALSTCAM and SSOA-Based Explainable Artificial Intelligence (XAI) to Generate Textual Explanations [J].
B. P. Sheela ;
H. Girisha ;
B. Sreepathi .
SN Computer Science, 6 (6)