Knowledge graph-based rich and confidentiality preserving Explainable Artificial Intelligence (XAI)

被引:28
作者
Rozanec, Joze M. [1 ,2 ,3 ]
Fortuna, Blaz [1 ,2 ]
Mladenic, Dunja [1 ]
机构
[1] Jozef Stefan Inst, Jamova 39, Ljubljana 1000, Slovenia
[2] Qlector Doo, Rovsnikova 7, Ljubljana 1000, Slovenia
[3] Jozef Stefan Int Postgrad Sch, Jamova 39, Ljubljana 1000, Slovenia
基金
欧盟地平线“2020”;
关键词
Explainable Artificial Intelligence; Knowledge Graph; Demand forecasting; Smart manufacturing; Confidentiality; Privacy; DEMAND; FORECASTS; ONTOLOGY;
D O I
10.1016/j.inffus.2021.11.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper proposes a novel architecture for explainable artificial intelligence based on semantic technologies and artificial intelligence. We tailor the architecture for the domain of demand forecasting and validate it on a real-world case study. The explanations provided result from knowledge fusion regarding concepts describing features relevant to a particular forecast, related media events, and metadata regarding external datasets of interest. The Knowledge Graph enhances the quality of explanations by informing concepts at a higher abstraction level rather than specific features. By doing so, explanations avoid exposing sensitive details regarding the demand forecasting models, thus preserving confidentiality. In addition, the Knowledge Graph enables linking domain knowledge, forecasted values, and forecast explanations while also providing insights into actionable aspects on which users can take action. The ontology and dataset we developed for this use case are publicly available for further research.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 50 条
[21]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[22]   An Explorative Study on the Adoption of Explainable Artificial Intelligence (XAI) in Business Organizations [J].
Darvish, Mahdieh ;
Kret, Kret Samy ;
Bick, Markus .
DISRUPTIVE INNOVATION IN A DIGITALLY CONNECTED HEALTHY WORLD, I3E 2024, 2024, 14907 :29-40
[23]   Explainable artificial intelligence (XAI): Precepts, models, and opportunities for research in construction [J].
Love, Peter E. D. ;
Fang, Weili ;
Matthews, Jane ;
Porter, Stuart ;
Luo, Hanbin ;
Ding, Lieyun .
ADVANCED ENGINEERING INFORMATICS, 2023, 57
[24]   Explainable artificial intelligence (XAI) in radiology and nuclear medicine: a literature review [J].
de Vries, Bart M. ;
Zwezerijnen, Gerben J. C. ;
Burchell, George L. ;
van Velden, Floris H. P. ;
van Oordt, Catharina Willemien Menke-van der Houven ;
Boellaard, Ronald .
FRONTIERS IN MEDICINE, 2023, 10
[25]   Utilizing Explainable Artificial Intelligence (XAI) to Identify Determinants of Coffee Quality [J].
Sermmany, Khamsing ;
Wanjantuk, Panupong ;
Leelapatra, Watis .
2024 21ST INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING, JCSSE 2024, 2024, :696-703
[26]   Federated Learning of Explainable Artificial Intelligence (FED-XAI): A Review [J].
Lopez-Blanco, Raul ;
Alonso, Ricardo S. ;
Gonzalez-Arrieta, Angelica ;
Chamoso, Pablo ;
Prieto, Javier .
DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 20TH INTERNATIONAL CONFERENCE, 2023, 740 :318-326
[27]   Framework for Classifying Explainable Artificial Intelligence (XAI) Algorithms in Clinical Medicine [J].
Gniadek, Thomas ;
Kang, Jason ;
Theparee, Talent ;
Krive, Jacob .
ONLINE JOURNAL OF PUBLIC HEALTH INFORMATICS, 2023, 15
[28]   Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence [J].
Ali, Sajid ;
Abuhmed, Tamer ;
El-Sappagh, Shaker ;
Muhammad, Khan ;
Alonso-Moral, Jose M. ;
Confalonieri, Roberto ;
Guidotti, Riccardo ;
Del Ser, Javier ;
Diaz-Rodriguez, Natalia ;
Herrera, Francisco .
INFORMATION FUSION, 2023, 99
[29]   Explainable Artificial Intelligence (XAI) Supporting Public Administration Processes - On the Potential of XAI in Tax Audit Processes [J].
Mehdiyev, Nijat ;
Houy, Constantin ;
Gutermuth, Oliver ;
Mayer, Lea ;
Fettke, Peter .
INNOVATION THROUGH INFORMATION SYSTEMS, VOL I: A COLLECTION OF LATEST RESEARCH ON DOMAIN ISSUES, 2021, 46 :413-428
[30]   A Knowledge Graph-Based Many-Objective Model for Explainable Social Recommendation [J].
Cai, Xingjuan ;
Guo, Wanwan ;
Zhao, Mengkai ;
Cui, Zhihua ;
Chen, Jinjun .
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (06) :3021-3030