Knowledge graph-based rich and confidentiality preserving Explainable Artificial Intelligence (XAI)

被引:25
作者
Rozanec, Joze M. [1 ,2 ,3 ]
Fortuna, Blaz [1 ,2 ]
Mladenic, Dunja [1 ]
机构
[1] Jozef Stefan Inst, Jamova 39, Ljubljana 1000, Slovenia
[2] Qlector Doo, Rovsnikova 7, Ljubljana 1000, Slovenia
[3] Jozef Stefan Int Postgrad Sch, Jamova 39, Ljubljana 1000, Slovenia
基金
欧盟地平线“2020”;
关键词
Explainable Artificial Intelligence; Knowledge Graph; Demand forecasting; Smart manufacturing; Confidentiality; Privacy; DEMAND; FORECASTS; ONTOLOGY;
D O I
10.1016/j.inffus.2021.11.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper proposes a novel architecture for explainable artificial intelligence based on semantic technologies and artificial intelligence. We tailor the architecture for the domain of demand forecasting and validate it on a real-world case study. The explanations provided result from knowledge fusion regarding concepts describing features relevant to a particular forecast, related media events, and metadata regarding external datasets of interest. The Knowledge Graph enhances the quality of explanations by informing concepts at a higher abstraction level rather than specific features. By doing so, explanations avoid exposing sensitive details regarding the demand forecasting models, thus preserving confidentiality. In addition, the Knowledge Graph enables linking domain knowledge, forecasted values, and forecast explanations while also providing insights into actionable aspects on which users can take action. The ontology and dataset we developed for this use case are publicly available for further research.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 50 条
  • [21] Explainable artificial intelligence (XAI) in radiology and nuclear medicine: a literature review
    de Vries, Bart M.
    Zwezerijnen, Gerben J. C.
    Burchell, George L.
    van Velden, Floris H. P.
    van Oordt, Catharina Willemien Menke-van der Houven
    Boellaard, Ronald
    FRONTIERS IN MEDICINE, 2023, 10
  • [22] Utilizing Explainable Artificial Intelligence (XAI) to Identify Determinants of Coffee Quality
    Sermmany, Khamsing
    Wanjantuk, Panupong
    Leelapatra, Watis
    2024 21ST INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING, JCSSE 2024, 2024, : 696 - 703
  • [23] Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence
    Ali, Sajid
    Abuhmed, Tamer
    El-Sappagh, Shaker
    Muhammad, Khan
    Alonso-Moral, Jose M.
    Confalonieri, Roberto
    Guidotti, Riccardo
    Del Ser, Javier
    Diaz-Rodriguez, Natalia
    Herrera, Francisco
    INFORMATION FUSION, 2023, 99
  • [24] Explainable Artificial Intelligence (XAI) Supporting Public Administration Processes - On the Potential of XAI in Tax Audit Processes
    Mehdiyev, Nijat
    Houy, Constantin
    Gutermuth, Oliver
    Mayer, Lea
    Fettke, Peter
    INNOVATION THROUGH INFORMATION SYSTEMS, VOL I: A COLLECTION OF LATEST RESEARCH ON DOMAIN ISSUES, 2021, 46 : 413 - 428
  • [25] A Knowledge Graph-Based Many-Objective Model for Explainable Social Recommendation
    Cai, Xingjuan
    Guo, Wanwan
    Zhao, Mengkai
    Cui, Zhihua
    Chen, Jinjun
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (06) : 3021 - 3030
  • [26] Revisiting the Performance-Explainability Trade -Off in Explainable Artificial Intelligence (XAI)
    Crook, Barnahy
    Schueter, Maximilian
    Speith, Timo
    2023 IEEE 31ST INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE WORKSHOPS, REW, 2023, : 316 - 324
  • [27] A methodological and theoretical framework for implementing explainable artificial intelligence (XAI) in business applications
    Tchuente, Dieudonne
    Lonlac, Jerry
    Kamsu-Foguem, Bernard
    COMPUTERS IN INDUSTRY, 2024, 155
  • [28] Black Box Attacks on Explainable Artificial Intelligence(XAI) methods in Cyber Security
    Kuppa, Aditya
    Le-Khac, Nhien-An
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [29] Explainable artificial intelligence (XAI) interactively working with humans as a junior cyber analyst
    Eric Holder
    Ning Wang
    Human-Intelligent Systems Integration, 2021, 3 (2) : 139 - 153
  • [30] Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)
    Adadi, Amina
    Berrada, Mohammed
    IEEE ACCESS, 2018, 6 : 52138 - 52160