Knowledge graph-based rich and confidentiality preserving Explainable Artificial Intelligence (XAI)

被引:25
|
作者
Rozanec, Joze M. [1 ,2 ,3 ]
Fortuna, Blaz [1 ,2 ]
Mladenic, Dunja [1 ]
机构
[1] Jozef Stefan Inst, Jamova 39, Ljubljana 1000, Slovenia
[2] Qlector Doo, Rovsnikova 7, Ljubljana 1000, Slovenia
[3] Jozef Stefan Int Postgrad Sch, Jamova 39, Ljubljana 1000, Slovenia
基金
欧盟地平线“2020”;
关键词
Explainable Artificial Intelligence; Knowledge Graph; Demand forecasting; Smart manufacturing; Confidentiality; Privacy; DEMAND; FORECASTS; ONTOLOGY;
D O I
10.1016/j.inffus.2021.11.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper proposes a novel architecture for explainable artificial intelligence based on semantic technologies and artificial intelligence. We tailor the architecture for the domain of demand forecasting and validate it on a real-world case study. The explanations provided result from knowledge fusion regarding concepts describing features relevant to a particular forecast, related media events, and metadata regarding external datasets of interest. The Knowledge Graph enhances the quality of explanations by informing concepts at a higher abstraction level rather than specific features. By doing so, explanations avoid exposing sensitive details regarding the demand forecasting models, thus preserving confidentiality. In addition, the Knowledge Graph enables linking domain knowledge, forecasted values, and forecast explanations while also providing insights into actionable aspects on which users can take action. The ontology and dataset we developed for this use case are publicly available for further research.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 50 条
  • [1] Knowledge Graph-Based Explainable Artificial Intelligence for Business Process Analysis
    Fuessl, Anne
    Nissen, Volker
    Heringklee, Stefan Horst
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2023, 17 (02) : 173 - 197
  • [2] Pathogenicity Prediction of Gene Fusion in Structural Variations: A Knowledge Graph-Infused Explainable Artificial Intelligence (XAI) Framework
    Murakami, Katsuhiko
    Tago, Shin-ichiro
    Takishita, Sho
    Morikawa, Hiroaki
    Kojima, Rikuhiro
    Yokoyama, Kazuaki
    Ogawa, Miho
    Fukushima, Hidehito
    Takamori, Hiroyuki
    Nannya, Yasuhito
    Imoto, Seiya
    Fuji, Masaru
    CANCERS, 2024, 16 (10)
  • [3] Explainable Artificial Intelligence (XAI) in Insurance
    Owens, Emer
    Sheehan, Barry
    Mullins, Martin
    Cunneen, Martin
    Ressel, Juliane
    Castignani, German
    RISKS, 2022, 10 (12)
  • [4] Visual explainable artificial intelligence for graph-based visual question answering and scene graph curation
    Sebastian Künzel
    Tanja Munz-Körner
    Pascal Tilli
    Noel Schäfer
    Sandeep Vidyapu
    Ngoc Thang Vu
    Daniel Weiskopf
    Visual Computing for Industry, Biomedicine, and Art, 8 (1)
  • [5] A Review of Trustworthy and Explainable Artificial Intelligence (XAI)
    Chamola, Vinay
    Hassija, Vikas
    Sulthana, A. Razia
    Ghosh, Debshishu
    Dhingra, Divyansh
    Sikdar, Biplab
    IEEE ACCESS, 2023, 11 : 78994 - 79015
  • [6] The Pragmatic Turn in Explainable Artificial Intelligence (XAI)
    Paez, Andres
    MINDS AND MACHINES, 2019, 29 (03) : 441 - 459
  • [7] Evaluation Metrics in Explainable Artificial Intelligence (XAI)
    Coroama, Loredana
    Groza, Adrian
    ADVANCED RESEARCH IN TECHNOLOGIES, INFORMATION, INNOVATION AND SUSTAINABILITY, ARTIIS 2022, PT I, 2022, 1675 : 401 - 413
  • [8] The Pragmatic Turn in Explainable Artificial Intelligence (XAI)
    Andrés Páez
    Minds and Machines, 2019, 29 : 441 - 459
  • [9] eXplainable Artificial Intelligence (XAI) in aging clock models
    Kalyakulina, Alena
    Yusipov, Igor
    Moskalev, Alexey
    Franceschi, Claudio
    Ivanchenko, Mikhail
    AGEING RESEARCH REVIEWS, 2024, 93
  • [10] Interactive Machine Learning of Knowledge Graph-Based Explainable Process Analysis
    Fuessl, Anne
    Nissen, Volker
    Heringklee, Stefan Horst
    ADVANCED INFORMATION SYSTEMS ENGINEERING WORKSHOPS, CAISE 2023 INTERNATIONAL WORKSHOPS, 2023, 482 : 112 - 124