Longitudinal Mode System Identification of an Insect-like Tailless Flapping-Wing Micro Air Vehicle Using Onboard Sensors

被引:4
|
作者
Aurecianus, Steven [1 ]
Ha, Gi-Heon [2 ]
Park, Hoon-Cheol [2 ]
Kang, Tae-Sam [3 ]
机构
[1] Konkuk Univ, Dept Aerosp Informat Engn, Seoul 05029, South Korea
[2] Konkuk Univ, Dept Smart Vehicle Engn, Seoul 05029, South Korea
[3] Konkuk Univ, Sch Mech & Aerosp Engn, Seoul 05029, South Korea
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 05期
基金
新加坡国家研究基金会;
关键词
system identification; flapping-wing micro air vehicle; longitudinal mode; model refinement; gray box model; onboard sensors; AERIAL VEHICLE; FLIGHT DYNAMICS; CLOSED-LOOP; STABILITY; DESIGN; ROBOT; MAV;
D O I
10.3390/app12052486
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application This paper presents the development of a longitudinal mode dynamic model via experiments of insect-like tailless flapping-wing micro air vehicles (FWMAVs). In this paper, model parameter identification results are presented for a longitudinal mode dynamic model of an insect-like tailless flapping-wing micro air vehicle (FWMAV) using angle and angular rate data from onboard sensors only. A gray box model approach with indirect method was utilized with adaptive Gauss-Newton, Levenberg-Marquardt, and gradient search identification methods. Regular and low-frequency reference commands were mainly used for identification since they gave higher fit percentages than irregular and high-frequency reference commands. Dynamic parameters obtained using three identification methods with two different datasets were similar to each other, indicating that the obtained dynamic model was sufficiently reliable. Most of the identified dynamic model parameters had similar values to the computationally obtained ones, except stability derivatives for pitching moment with forward velocity and pitching rate variations. Differences were mainly due to certain neglected body, nonlinear dynamics, and the shift of the center of gravity. Fit percentage of the identified dynamic model (~49%) was more than two-fold higher than that of the computationally obtained one (~22%). Frequency domain analysis showed that the identified model was much different from that of the computationally obtained one in the frequency range of 0.3 rad/s to 5 rad/s, which affected transient responses. Both dynamic models showed that the phase margin was very low, and that it should be increased by a feedback controller to have a robustly stable system. The stable dominant pole of the identified model had a higher magnitude which resulted in faster responses. The identified dynamic model exhibited much closer responses to experimental flight data in pitching motion than the computationally obtained dynamic model, demonstrating that the identified dynamic model could be used for the design of more effective pitch angle-stabilizing controllers.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Dove: A biomimetic flapping-wing micro air vehicle
    Yang, Wenqing
    Wang, Liguang
    Song, Bifeng
    INTERNATIONAL JOURNAL OF MICRO AIR VEHICLES, 2018, 10 (01) : 70 - 84
  • [32] Control of insect-like flapping wing micro air vehicles I: Control mechanic
    Hu Minglang
    Wei Ruixuan
    Zhou Wei
    Cui Xiaofeng
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 4, 2007, : 643 - +
  • [33] Control of a Flapping-Wing Micro Air Vehicle: Sliding-Mode Approach
    Bluman, James E.
    Kang, Chang-Kwon
    Shtessel, Yuri
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2018, 41 (05)
  • [34] Decoupled control for insect-like flapping wing air vehicles
    Hu, Ming-Lang
    Zhou, Xiang-Dong
    Wei, Rui-Xuan
    Wang, Qiang
    Shen, Dong
    Zhou, Xin-Li
    Jiqiren/Robot, 2009, 31 (02): : 151 - 158
  • [35] Control of insect-like flapping wing micro air vehicles II: Control parameter
    Hu Minglang
    Wei Ruixuan
    DongZhiXing
    Cui Xiaofeng
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 4, 2007, : 649 - +
  • [36] Longitudinal modelling and control of a flapping-wing micro aerial vehicle
    Rakotomamonjy, Thomas
    Ouladsine, Mustapha
    Le Moing, Thierry
    CONTROL ENGINEERING PRACTICE, 2010, 18 (07) : 679 - 690
  • [37] An Insect-Like Flapping-Wing Device Actuated by a Compressed Unimorph Piezoelectric Composite Actuator
    Nguyen, Quoc Viet
    Park, Hoon Cheol
    Goo, Nam Seo
    Byun, Doyoung
    INTELLIGENT UNMANNED SYSTEMS: THEORY AND APPLICATIONS, 2009, 192 : 101 - +
  • [38] Modeling and flapping vibration suppression of a novel tailless flapping wing micro air vehicle
    Siqi WANG
    Bifeng SONG
    Ang CHEN
    Qiang FU
    Jin CUI
    Chinese Journal of Aeronautics , 2022, (03) : 309 - 328
  • [39] Modeling and flapping vibration suppression of a novel tailless flapping wing micro air vehicle
    Siqi WANG
    Bifeng SONG
    Ang CHEN
    Qiang FU
    Jin CUI
    Chinese Journal of Aeronautics, 2022, 35 (03) : 309 - 328
  • [40] Development of a Novel Tailless X-Type Flapping-Wing Micro Air Vehicle with Independent Electric Drive
    Zhang, Yixin
    Zeng, Song
    Zhu, Shenghua
    Wang, Shaoping
    Wang, Xingjian
    Miao, Yinan
    Jia, Le
    Yang, Xinyu
    Yang, Mengqi
    BIOMIMETICS, 2024, 9 (11)