Longitudinal Mode System Identification of an Insect-like Tailless Flapping-Wing Micro Air Vehicle Using Onboard Sensors

被引:4
|
作者
Aurecianus, Steven [1 ]
Ha, Gi-Heon [2 ]
Park, Hoon-Cheol [2 ]
Kang, Tae-Sam [3 ]
机构
[1] Konkuk Univ, Dept Aerosp Informat Engn, Seoul 05029, South Korea
[2] Konkuk Univ, Dept Smart Vehicle Engn, Seoul 05029, South Korea
[3] Konkuk Univ, Sch Mech & Aerosp Engn, Seoul 05029, South Korea
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 05期
基金
新加坡国家研究基金会;
关键词
system identification; flapping-wing micro air vehicle; longitudinal mode; model refinement; gray box model; onboard sensors; AERIAL VEHICLE; FLIGHT DYNAMICS; CLOSED-LOOP; STABILITY; DESIGN; ROBOT; MAV;
D O I
10.3390/app12052486
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application This paper presents the development of a longitudinal mode dynamic model via experiments of insect-like tailless flapping-wing micro air vehicles (FWMAVs). In this paper, model parameter identification results are presented for a longitudinal mode dynamic model of an insect-like tailless flapping-wing micro air vehicle (FWMAV) using angle and angular rate data from onboard sensors only. A gray box model approach with indirect method was utilized with adaptive Gauss-Newton, Levenberg-Marquardt, and gradient search identification methods. Regular and low-frequency reference commands were mainly used for identification since they gave higher fit percentages than irregular and high-frequency reference commands. Dynamic parameters obtained using three identification methods with two different datasets were similar to each other, indicating that the obtained dynamic model was sufficiently reliable. Most of the identified dynamic model parameters had similar values to the computationally obtained ones, except stability derivatives for pitching moment with forward velocity and pitching rate variations. Differences were mainly due to certain neglected body, nonlinear dynamics, and the shift of the center of gravity. Fit percentage of the identified dynamic model (~49%) was more than two-fold higher than that of the computationally obtained one (~22%). Frequency domain analysis showed that the identified model was much different from that of the computationally obtained one in the frequency range of 0.3 rad/s to 5 rad/s, which affected transient responses. Both dynamic models showed that the phase margin was very low, and that it should be increased by a feedback controller to have a robustly stable system. The stable dominant pole of the identified model had a higher magnitude which resulted in faster responses. The identified dynamic model exhibited much closer responses to experimental flight data in pitching motion than the computationally obtained dynamic model, demonstrating that the identified dynamic model could be used for the design of more effective pitch angle-stabilizing controllers.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Lateral mode controller design for insect-like tailless flapping-wing micro air vehicle
    Aurecianus S.
    Phan H.V.
    Park J.
    Park H.C.
    Kang T.
    Journal of Institute of Control, Robotics and Systems, 2021, 27 (01) : 1 - 10
  • [2] Remotely Controlled flight of an Insect-like Tailless Flapping-wing Micro Air Vehicle
    Phan, Hoang Vu
    Park, Hoon Cheol
    2015 12TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2015, : 315 - 317
  • [3] Controlled hovering flight of an insect-like tailless flapping-wing micro air vehicle
    Hoang Vu Phan
    Kang, Taesam
    Park, Hoon Cheol
    2017 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS (ICM), 2017, : 74 - 78
  • [4] Development of an Insect-like Flapping-Wing Micro Air Vehicle with Parallel Control Mechanism
    Chen, Zihao
    Zhang, Weiping
    Mou, Jiawang
    Zhao, Jiaxin
    APPLIED SCIENCES-BASEL, 2022, 12 (07):
  • [5] Efficient flexures for insect-like flapping-wing micro aerial vehicle
    Zou, Cai-Jun
    Zhang, Wei-Ping
    Ke, Xi-Jun
    Shao, Yun-Li
    Zhang, Wei
    Chai, Shuang-Shuang
    Hu, Nan
    Ye, Yi-Nan
    Chen, Wen-Yuan
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2014, 48 (03): : 439 - 444
  • [6] Piezoelectric actuators for insect-like flapping-wing micro aerial vehicle
    Chai, Shuang-Shuang
    Zhang, Wei-Ping
    Ke, Xi-Jun
    Zou, Yang
    Zhang, Wei
    Ye, Yi-Nan
    Zhang, Zheng
    Hu, Nan
    Wu, Fan
    Chen, Wen-Yuan
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2015, 49 (05): : 663 - 668
  • [7] Generation of Control Moments in an Insect-like Tailless Flapping-wing Micro Air Vehicle by Changing the Stroke-plane Angle
    Hoang Vu Phan
    Park, Hoon Cheol
    JOURNAL OF BIONIC ENGINEERING, 2016, 13 (03) : 449 - 457
  • [8] Generation of Control Moments in an Insect-like Tailless Flapping-wing Micro Air Vehicle by Changing the Stroke-plane Angle
    Hoang Vu Phan
    Hoon Cheol Park
    Journal of Bionic Engineering, 2016, 13 : 449 - 457
  • [9] Wing flexibility effects on the flight performance of an insect-like flapping-wing micro-air vehicle
    Anh Tuan Nguyen
    Han, Jae-Hung
    AEROSPACE SCIENCE AND TECHNOLOGY, 2018, 79 : 468 - 481
  • [10] Modeling and simulation study of an insect-like flapping-wing micro aerial vehicle
    Zuo, Decan
    Chen, Wenyuan
    Peng, Songlin
    Zhang, Weiping
    ADVANCED ROBOTICS, 2006, 20 (07) : 807 - 824