POLYNOMIAL ERGODIC AVERAGES FOR CERTAIN COUNTABLE RING ACTIONS

被引:4
作者
Best, Andrew [1 ]
Moragues, Andreu Ferre [2 ]
机构
[1] Beijing Inst Math Sci & Applicat, Beijing, Peoples R China
[2] Nicolaus Copernicus Univ, Dept Math, Torun, Poland
关键词
Joint ergodicity; independent polynomials; field actions; ring actions; locally compact abelian groups; Gowers-Host-Kra seminorms; equidistribution; MULTIPLE RECURRENCE; SZEMEREDI THEOREM; HARDY SEQUENCES; CONVERGENCE;
D O I
10.3934/dcds.2022019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A recent result of Frantzikinakis in [17] establishes sufficient conditions for joint ergodicity in the setting of Z-actions. We generalize this result for actions of second-countable locally compact abelian groups. We obtain two applications of this result. First, we show that, given an ergodic action (T-n) n subset of F of a countable field F with characteristic zero on a probability space (X, B, mu) and a family {p(1), ..., p(k)} of independent polynomials, we have lim(N ->infinity) 1/vertical bar Phi(N)vertical bar Sigma(n is an element of Phi N) T-p1(n) f(1) ... T-pk(n) f(k) = Pi(j=1) integral(X) f(i) d mu, where f(i) is an element of L-infinity(mu), (Phi(N)) is a Flner sequence of (F, +), and the convergence takes place in L-2 (mu). This yields corollaries in combinatorics and topological dynamics. Second, we prove that a similar result holds for totally ergodic actions of suitable rings.
引用
收藏
页码:3379 / 3413
页数:35
相关论文
共 22 条
  • [1] Sumset phenomenon in countable amenable groups
    Beiglboeck, Mathias
    Bergelson, Vitaly
    Fish, Alexander
    [J]. ADVANCES IN MATHEMATICS, 2010, 223 (02) : 416 - 432
  • [2] WEAKLY MIXING PET
    BERGELSON, V
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1987, 7 : 337 - 349
  • [3] Polynomial Szemeredi theorems for countable modules over integral domains and finite fields
    Bergelson, V
    Leibman, A
    McCutcheon, R
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2005, 95 (1): : 243 - 296
  • [4] Cubic averages and large intersections
    Bergelson, V.
    Leibman, A.
    [J]. RECENT TRENDS IN ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 631 : 5 - 19
  • [5] Bergelson V, 2000, LOND MATH S, V279, P167
  • [6] Bergelson V., 1996, London Math. Soc. Lecture Note Ser., V228, P1
  • [7] AN ERGODIC CORRESPONDENCE PRINCIPLE, INVARIANT MEANS AND APPLICATIONS
    Bergelson, Vitaly
    Moragues, Andreu Ferre
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2021, 245 (02) : 921 - 962
  • [8] Van der Corput's difference theorem: some modem developments
    Bergelson, Vitaly
    Moreira, Joel
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (02): : 437 - 479
  • [9] Bergelson V, 2015, J ANAL MATH, V127, P329, DOI 10.1007/s11854-015-0033-1
  • [10] Eisner T., 2015, GRADUATE TEXTS MATH, V272