On the rank of elliptic curves over Q(√-3) with torsion groups Z/3Z x Z/3Z and Z/3Z x Z/6Z

被引:6
|
作者
Bokun, Mirela Jukic [1 ]
机构
[1] Univ Osijek, Dept Math, Trg Ljudevita Gaja 6, Osijek 31000, Croatia
关键词
Elliptic curve; torsion group; rank; POINTS;
D O I
10.3792/pjaa.87.61
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct elliptic curves over the field Q(root-3) with torsion group Z/3Z x Z/3Z and ranks equal to 7 and an elliptic curve over the same field with torsion group Z/3Z x Z/6Z and rank equal to 6.
引用
收藏
页码:61 / 64
页数:4
相关论文
共 31 条
  • [21] Quasi-One-Dimensional Spin Transport in Altermagnetic Z3 Nodal Net Metals
    He, Tingli
    Li, Lei
    Cui, Chaoxi
    Zhang, Run-Wu
    Yu, Zhi-Ming
    Liu, Guodong
    Zhang, Xiaoming
    PHYSICAL REVIEW LETTERS, 2024, 133 (14)
  • [22] On the Diophantine system f (z) = f (x) f (y) = f (u) f (v)
    Zhang, Yong
    Shen, Zhongyan
    PERIODICA MATHEMATICA HUNGARICA, 2017, 75 (02) : 295 - 301
  • [23] 3D computer models of the T-x-y diagrams, forming the LiF-NaF-CaF2-LaF3 T-x-y-z diagram
    Vorob'eva, V. P.
    Zelenaya, A. E.
    Lutsyk, V. I.
    Lamueva, M. V.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2020, 11 (03): : 345 - 354
  • [24] On certain Diophantine equations of the form z2 = f(x)2 ± g(y)2
    Tengely, Sz
    Ulas, M.
    JOURNAL OF NUMBER THEORY, 2017, 174 : 239 - 257
  • [25] ON THE DIOPHANTINE EQUATIONS z2 = f(x)2 ± f(y)2 INVOLVING LAURENT POLYNOMIALS
    Zhang, Yong
    Zargar, Arman Shamsi
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2020, 62 (02) : 187 - 201
  • [26] On the Diophantine equations z2=f(x)2±f(y)2 involving quartic polynomials
    Zhang, Yong
    Zargar, Arman Shamsi
    PERIODICA MATHEMATICA HUNGARICA, 2019, 79 (01) : 25 - 31
  • [27] ON THE DIOPHANTINE EQUATIONS z2 = f(x)2 ± f(y)2 INVOLVING LAURENT POLYNOMIALS II
    Zhang, Yong
    Tang, Qiongzhi
    Zhang, Yuna
    MISKOLC MATHEMATICAL NOTES, 2022, 23 (02) : 1023 - 1036
  • [28] ON THE DIOPHANTINE EQUATION (pn)x+(4mp+1)y=z2WHEN p, 4mp +1 ARE PRIME NUMBERS
    Nam, Pham Hong
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2025, 37 : 190 - 200
  • [29] A note on the Diophantine equation f(x)f(y)=f(z2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)f(y)=f(z^2)$$\end{document}
    Yong Zhang
    Tianxin Cai
    Periodica Mathematica Hungarica, 2015, 70 (2) : 209 - 215
  • [30] On the Diophantine equations z2=f(x)2±f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^2=f(x)^2 \pm f(y)^2$$\end{document} involving quartic polynomials
    Yong Zhang
    Arman Shamsi Zargar
    Periodica Mathematica Hungarica, 2019, 79 (1) : 25 - 31