Generalized Zero-Shot Learning using Identifiable Variational Autoencoders

被引:7
|
作者
Gull, Muqaddas [1 ]
Arif, Omar [1 ]
机构
[1] Natl Univ Sci & Technol NUST, Sch Elect Engn & Comp Sci, Islamabad 44000, Pakistan
关键词
Zero-shot learning; Generalized zero-shot learning; Non-Linear ICA; Disentangled Representat i o n Learning;
D O I
10.1016/j.eswa.2021.116268
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning tasks rely heavily on a large amount of training data, but collecting and annotating data daily is not practical. Therefore, Zero-shot learning (ZSL) has become important for the applications, where no labeled data is available during training. ZSL aims at recognizing unseen classes by semantic transfer of information from seen to unseen classes. In this paper, we have proposed an identifiable VAE (iVAE) based generative model to address conventional and generalized ZSL. The key to our approach is learning disentangled representations, where each dimension is statistically independent and responsible for generating data. Thus, VAE is a commonly used model for learning disentangled independent factors of variation from the data. Our goal is to learn a latent space representing significant information, that approximates the actual data distribution. Extensive experiments on five benchmark datasets, i.e. CUB, AWA1, AWA2, SUN and aPY, are performed for further evaluation in both settings.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Generalized Zero-Shot Extreme Multi-label Learning
    Gupta, Nilesh
    Bohra, Sakina
    Prabhu, Yashoteja
    Purohit, Saurabh
    Varma, Manik
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 527 - 535
  • [42] Towards Discriminative Feature Generation for Generalized Zero-Shot Learning
    Ge, Jiannan
    Xie, Hongtao
    Li, Pandeng
    Xie, Lingxi
    Min, Shaobo
    Zhang, Yongdong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 10514 - 10529
  • [43] Contrastive visual feature filtering for generalized zero-shot learning
    Meng, Shixuan
    Jiang, Rongxin
    Tian, Xiang
    Zhou, Fan
    Chen, Yaowu
    Liu, Junjie
    Shen, Chen
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024,
  • [44] Bidirectional Mapping Coupled GAN for Generalized Zero-Shot Learning
    Shermin, Tasfia
    Teng, Shyh Wei
    Sohel, Ferdous
    Murshed, Manzur
    Lu, Guojun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 721 - 733
  • [45] Inference guided feature generation for generalized zero-shot learning
    Han, Zongyan
    Fu, Zhenyong
    Li, Guangyu
    Yang, Jian
    NEUROCOMPUTING, 2021, 430 : 150 - 158
  • [46] Triple Loss Based Framework for Generalized Zero-Shot Learning
    Shen, Yaying
    Li, Qun
    Xu, Ding
    Zhang, Ziyi
    Yang, Rui
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (04) : 832 - 835
  • [47] Inductive Generalized Zero-Shot Learning with Adversarial Relation Network
    Yang, Guanyu
    Huang, Kaizhu
    Zhang, Rui
    Goulermas, John Y.
    Hussain, Amir
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT II, 2021, 12458 : 724 - 739
  • [48] Aligning enhanced feature representation for generalized zero-shot learning
    Fang, Zhiyu
    Zhu, Xiaobin
    Yang, Chun
    Zhou, Hongyang
    Qin, Jingyan
    Yin, Xu-Cheng
    SCIENCE CHINA-INFORMATION SCIENCES, 2025, 68 (02)
  • [49] Dual VAEGAN: A generative model for generalized zero-shot learning
    Luo, Yuxuan
    Wang, Xizhao
    Pourpanah, Farhad
    APPLIED SOFT COMPUTING, 2021, 107
  • [50] Mitigating Generation Shi!s for Generalized Zero-Shot Learning
    Chen, Zhi
    Luo, Yadan
    Wang, Sen
    Qiu, Ruihong
    Li, Jingjing
    Huang, Zi
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 844 - 852