An inverse formula for the distance matrix of a fan graph

被引:4
作者
Hao, Chan [1 ]
Li, Shuchao [1 ]
Zhang, Licheng [2 ]
机构
[1] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Peoples R China
[2] Hunan Normal Univ, Coll Math & Stat, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
Fan graph; distance matrix; inverse matrix; EVEN NUMBER;
D O I
10.1080/03081087.2021.2011827
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-n be the fan graph with n >= 3 vertices. The distance d(i,j) between any two distinct vertices i and j of F-n is the length of the shortest path connecting land j. Let (D) over cap be the n x n symmetric matrix with diagonal entries equal to zero and off-diagonal entries equal to d(i,j). In this paper, we find two positive semidefinite matrices L-o and L-e such that rank(L-o) = rank(L-e) = n - 1, all row sums of L-o and L-e, are equal to zero, and find two rank one matrices alpha alpha' and (alpha) over tilde(alpha) over tilde' such that (D) over cap (-1) = {-1/n L-o + 4/n(n(2)-1)alpha alpha', if n is odd; -1/nL(e) + 1/n (alpha) over tilde(alpha) over tilde', if n is even. The interlacing property between the eigenvalues of (D) over cap and L-o (resp., L-e ) is also established.
引用
收藏
页码:7807 / 7824
页数:18
相关论文
共 20 条
[1]   An inverse formula for the distance matrix of a wheel graph with an even number of vertices [J].
Balaji, R. ;
Bapat, R. B. ;
Goel, Shivani .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 610 :274-292
[2]   Inverse of the distance matrix of a block graph [J].
Bapat, R. B. ;
Sivasubramanian, Sivaramakrishnan .
LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (12) :1393-1397
[3]  
Bapat RB., 2018, GRAPHS MATRICES
[4]  
Bondy J.A, 2008, Graph Theory
[5]   Resistance distance and the normalized Laplacian spectrum [J].
Chen, Haiyan ;
Zhang, Fuji .
DISCRETE APPLIED MATHEMATICS, 2007, 155 (05) :654-661
[6]   Distance matrix of a multi-block graph: determinant and inverse [J].
Das, Joyentanuj ;
Mohanty, Sumit .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19) :3994-4022
[7]   On distance matrices of helm graphs obtained from wheel graphs with an even number of vertices [J].
Goel, Shivani .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 621 :86-104
[8]   DISTANCE MATRIX POLYNOMIALS OF TREES [J].
GRAHAM, RL ;
LOVASZ, L .
ADVANCES IN MATHEMATICS, 1978, 29 (01) :60-88
[9]   ADDRESSING PROBLEM FOR LOOP SWITCHING [J].
GRAHAM, RL ;
POLLAK, HO .
BELL SYSTEM TECHNICAL JOURNAL, 1971, 50 (08) :2495-+
[10]   Methods for constructing distance matrices and the inverse eigenvalue problem [J].
Hayden, TL ;
Reams, R ;
Wells, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 295 (1-3) :97-112