The neatest many-body problem amenable to exact treatments (a "goldfish"?)

被引:67
|
作者
Calogero, F [1 ]
机构
[1] Univ Rome La Sapienza, Dipartimento Fis, Ist Nazl Fis Nucl, Sezione Roma, I-00185 Rome, Italy
来源
PHYSICA D | 2001年 / 152卷
关键词
many-body problem; invariant; newtonian equations;
D O I
10.1016/S0167-2789(01)00160-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Various formulations, findings and conjectures are reviewed, which relate to a many-body problem that is arguably the neatest nontrivial such model amenable to exact treatments. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:78 / 84
页数:7
相关论文
共 17 条
  • [1] Numerical Exact Solutions to the Many-body Problem Based on the Differential Forms
    Kondo S.-I.
    Kazuyoshi Y.
    Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2023, 70 (06): : 281 - 289
  • [2] Hill stability in the many-body problem
    L. G. Luk’yanov
    L. P. Nasonova
    G. I. Shirmin
    Astronomy Letters, 2003, 29 : 274 - 277
  • [3] Hill stability in the many-body problem
    Luk'yanov, LG
    Nasonova, LP
    Shirmin, GI
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2003, 29 (04): : 274 - 277
  • [4] On a new formulation of the many-body problem in general relativity
    René Schmidt
    General Relativity and Gravitation, 2012, 44 : 959 - 984
  • [5] On a new formulation of the many-body problem in general relativity
    Schmidt, Rene
    GENERAL RELATIVITY AND GRAVITATION, 2012, 44 (04) : 959 - 984
  • [6] DIMENSIONAL SCALING AND THE QUANTUM-MECHANICAL MANY-BODY PROBLEM
    AVERY, J
    GOODSON, DZ
    HERSCHBACH, DR
    THEORETICA CHIMICA ACTA, 1991, 81 (1-2): : 1 - 20
  • [7] Reduction of the many-body problem and the unified theory for nuclear reaction
    Zhang, QR
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1999, 32 (03) : 387 - 394
  • [8] Chaotic Dynamics in the Planar Gravitational Many-Body Problem with Rigid Body Rotations
    Kwiecinski, James A.
    Kovacs, Attila
    Krause, Andrew L.
    Planella, Ferran Brosa
    Van Gorder, Robert A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (05):
  • [9] On the structure of the essential spectrum of a model many-body Hamiltonian
    T. Kh. Rasulov
    Mathematical Notes, 2008, 83 : 80 - 87
  • [10] On the structure of the essential spectrum of a model many-body Hamiltonian
    Rasulov, T. Kh.
    MATHEMATICAL NOTES, 2008, 83 (1-2) : 80 - 87