On m-ovoids of W3(q)

被引:18
作者
Cossidente, A. [2 ]
Culbert, C. [3 ]
Ebert, G. L. [1 ]
Marino, G. [4 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
[2] Univ Basilicata, Dipartimento Matemat, I-85100 Potenza, Italy
[3] Anne Arundel Community Coll, Dept Math, Arnold, MD 21002 USA
[4] Univ Naples Federico 2, Dept Math & Appl, I-80126 Naples, Italy
关键词
symplectic generalized quadrangle; Singer cycle; m-ovoid;
D O I
10.1016/j.ffa.2006.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the generalized quadrangle W-3(q) for odd q has exponentially many 1/2(q + 1)-ovoids, thus implying that the generalized quadrangle Q(4,q) has exponentially many hemisystems for odd q. For q even, we show that W-3(q) has m-ovoids for all integers m, 1 <= m <= q. Stabilizers are determined, and some computer results are given. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:76 / 84
页数:9
相关论文
共 15 条
  • [1] INTERSECTION PATTERN OF THE CLASSICAL OVOIDS IN SYMPLECTIC 3-SPACE OF EVEN ORDER
    BAGCHI, B
    SASTRY, NSN
    [J]. JOURNAL OF ALGEBRA, 1989, 126 (01) : 147 - 160
  • [2] Baker R.D, 1985, ALGEBRAS GROUPS GEOM, V3, P248
  • [3] Baker RD, 1996, GEOMETRIAE DEDICATA, V63, P1
  • [4] BAMBERG J, UNPUB TIGHT SETS M O
  • [5] BRUCK RH, 1969, COMBINATORIAL MATH I, P426
  • [6] CAMERON PJ, 1979, PHILIPS J RES, V34, P147
  • [7] CANNON J, 1993, INTRO MAGMA
  • [8] Hemisystems on the Hermitian surface
    Cossidente, A
    Penttila, T
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 : 731 - 741
  • [9] Proper 2-covers of PG(3,q), q even
    Drudge, K
    [J]. GEOMETRIAE DEDICATA, 2000, 80 (1-3) : 59 - 64
  • [10] PARTITIONING PROJECTIVE GEOMETRIES INTO CAPS
    EBERT, GL
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1985, 37 (06): : 1163 - 1175