The degree of functions and weights in linear codes

被引:0
作者
Guritman, S [1 ]
Hoogweg, F [1 ]
Simonis, J [1 ]
机构
[1] Delft Univ Technol, Dept Pure Math, Fac Informat Technol & Syst, NL-2600 GA Delft, Netherlands
关键词
linear code; Reed-Muller code; polynomial degree;
D O I
10.1016/S0166-218X(00)00346-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Properties of the weight distribution of low-dimensional generalized Reed-Muller codes are used to obtain restrictions on the weight distribution of linear codes over arbitrary fields. These restrictions are used in non-existence proofs for ternary linear code with parameters [74, 10, 44] [82, 6, 53] and [96, 6, 62]. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:87 / 102
页数:16
相关论文
共 19 条
[1]  
[Anonymous], 1983, THEORY ERROR CORRECT
[2]  
[Anonymous], B SOC MATH FRANCE
[3]  
[Anonymous], HDB CODING THEORY
[4]  
ASSMUS EF, 1998, HDB CODING THEORY
[5]   ZEROES OF POLYNOMIALS OVER FINITE FIELDS [J].
AX, J .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (02) :255-&
[6]   THE AUTOMORPHISM GROUP OF GENERALIZED REED-MULLER CODES [J].
BERGER, T ;
CHARPIN, P .
DISCRETE MATHEMATICS, 1993, 117 (1-3) :1-17
[7]   Some bounds for the minimum length of binary linear codes of dimension nine [J].
Bouyukliev, I ;
Guritman, S ;
Vavrek, V .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) :1053-1056
[8]   THE LINEAR-PROGRAMMING BOUND FOR BINARY LINEAR CODES [J].
BROUWER, AE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (02) :677-680
[9]   ON GENERALIZED REED-MULLER CODES AND THEIR RELATIVES [J].
DELSARTE, P ;
GOETHALS, JM ;
MACWILLI.FJ .
INFORMATION AND CONTROL, 1970, 16 (05) :403-&
[10]  
Dodunekov S, 1999, IEEE T INFORM THEORY, V45, P2541