Bearing Fault Diagnosis Under Variable Working Conditions Based on Domain Adaptation Using Feature Transfer Learning

被引:71
作者
Tong, Zhe [1 ]
Li, Wei [1 ]
Zhang, Bo [2 ]
Jiang, Fan [1 ]
Zhou, Gongbo [1 ]
机构
[1] China Univ Min & Technol, Sch Mech Engn, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
来源
IEEE ACCESS | 2018年 / 6卷
关键词
Fault diagnosis; vibration signal; domain adaptation; feature transfer learning; SUPPORT VECTOR MACHINE; FEATURE-EXTRACTION;
D O I
10.1109/ACCESS.2018.2883078
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bearings, as universal components, have been widely used in the important position of rotating machinery. However, due to the distribution divergence between training data and test data caused by variable working conditions, such as different rotation speeds and load conditions, most of the fault diagnosis models built during the training stage are not applicable for the detection in the test stage. The models dramatically lead to the performance degradation for fault classification. In this paper, a novel bearing fault diagnosis method, domain adaptation by using feature transfer learning (DAFTL) under variable working conditions, is proposed to solve this performance degradation issue. The dataset of normal bearings and faulty bearings are obtained via the fast Fourier transformation of raw vibration signals, under different motor speeds and load conditions. Then, the marginal and conditional distributions are reduced simultaneously between training data and test data by refining pseudo test labels based on the maximum mean discrepancy and domain invariant clustering in a common space. Ultimately, a transferable feature representation for training data and test data is achieved. With the help of the nearest-neighbor classifier built on the transferable features, bearing faults are identified in this common space. Extensive experimental results show that the DAFTL can identify the bearing fault accurately under variable working conditions and outperforms other competitive approaches.
引用
收藏
页码:76187 / 76197
页数:11
相关论文
共 50 条
  • [1] Bearing fault diagnosis in variable working conditions based on domain adaptation
    Cao, Jie
    Yin, Haonan
    Lei, Xiaogang
    Wang, Jinhua
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (08): : 2382 - 2390
  • [2] Bearing Fault Diagnosis Under Variable Working Conditions Base on Contrastive Domain Adaptation Method
    An, Yiyao
    Zhang, Ke
    Chai, Yi
    Liu, Qie
    Huang, Xinghua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [3] Class Subdomain Adaptation Network for Bearing Fault Diagnosis Under Variable Working Conditions
    Zhang, Lu
    Li, Hua
    Cui, Jie
    Li, Wei
    Wang, Xiaodong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [4] Few-Shot Learning-Based Fault Diagnosis Using Prototypical Contrastive-Based Domain Adaptation Under Variable Working Conditions
    An, Yiyao
    Li, Zhaofei
    Li, Yuanyuan
    Zhang, Ke
    Zhu, Zhiqin
    Chai, Yi
    IEEE SENSORS JOURNAL, 2024, 24 (15) : 25019 - 25029
  • [5] Multisource Domain Feature Adaptation Network for Bearing Fault Diagnosis Under Time-Varying Working Conditions
    Wang, Rui
    Huang, Weiguo
    Wang, Jun
    Shen, Changqing
    Zhu, Zhongkui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [6] Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions
    An, Yiyao
    Zhang, Ke
    Chai, Yi
    Liu, Qie
    Huang, Xinghua
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 212
  • [7] The fault diagnosis method of rolling bearing under variable working conditions based on deep transfer learning
    Dong, Shaojiang
    He, Kun
    Tang, Baoping
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (11)
  • [8] The fault diagnosis method of rolling bearing under variable working conditions based on deep transfer learning
    Shaojiang Dong
    Kun He
    Baoping Tang
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [9] Bearing fault diagnosis under different operating conditions based on cross domain feature projection and domain adaptation
    Dong, Shuzhi
    Wen, Guangrui
    Zhang, Zhifen
    2019 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2019, : 1185 - 1190
  • [10] Parameter-Based Transfer Learning for Bearing Fault Diagnosis Using Small Samples Under Variable Working Conditions
    Aduwenye, Presley
    Nutakor, Charles
    Roininen, Lassi
    Sopanen, Jussi
    IEEE Access, 2025, 13 : 44214 - 44230