Distributed acoustic sensing for seismic activity monitoring

被引:137
作者
Fernandez-Ruiz, Maria R. [1 ]
Soto, Marcelo A. [2 ]
Williams, Ethan F. [3 ]
Martin-Lopez, Sonia [1 ]
Zhan, Zhongwen [3 ]
Gonzalez-Herraez, Miguel [1 ]
Martins, Hugo F. [4 ]
机构
[1] Univ Alcala, Dept Elect, Alcala De Henares 28805, Spain
[2] Univ Tecn Federico Santa Maria, Dept Elect Engn, Valparaiso 2390123, Chile
[3] CALTECH, Seismol Lab, Pasadena, CA 91125 USA
[4] CSIC, Inst Opt, Serrano 121, E-28006 Madrid, Spain
基金
欧盟地平线“2020”;
关键词
TIME-DOMAIN REFLECTOMETER; PHASE-SENSITIVE OTDR; PULSE; STRAIN; SENSOR; TEMPERATURE; RESOLUTION; FIELD; DEMODULATION; PERFORMANCE;
D O I
10.1063/1.5139602
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Continuous, real-time monitoring of surface seismic activity around the globe is of great interest for acquiring new insight into global tomography analyses and for recognition of seismic patterns leading to potentially hazardous situations. The already-existing telecommunication fiber optic network arises as an ideal solution for this application, owing to its ubiquity and the capacity of optical fibers to perform distributed, highly sensitive monitoring of vibrations at relatively low cost (ultra-high density of point sensors available with minimal deployment of new equipment). This perspective article discusses early approaches on the application of fiber-optic distributed acoustic sensors (DASs) for seismic activity monitoring. The benefits and potential impact of DAS technology in these kinds of applications are here illustrated with new experimental results on teleseism monitoring based on a specific approach: the so-called chirped-pulse DAS. This technology offers promising prospects for the field of seismic tomography due to its appealing properties in terms of simplicity, consistent sensitivity across sensing channels, and robustness. Furthermore, we also report on several signal processing techniques readily applicable to chirped-pulse DAS recordings for extracting relevant seismic information from ambient acoustic noise. The outcome presented here may serve as a foundation for a novel conception for ubiquitous seismic monitoring with minimal investment.
引用
收藏
页数:16
相关论文
共 85 条
[1]  
Agrawal G., 2001, NONLINEAR FIBER OPTI, V3rd edn
[2]   Distributed Acoustic Sensing Using Dark Fiber for Near-Surface Characterization and Broadband Seismic Event Detection [J].
Ajo-Franklin, Jonathan B. ;
Dou, Shan ;
Lindsey, Nathaniel J. ;
Monga, Inder ;
Tracy, Chris ;
Robertson, Michelle ;
Tribaldos, Veronica Rodriguez ;
Ulrich, Craig ;
Freifeld, Barry ;
Daley, Thomas ;
Li, Xiaoye .
SCIENTIFIC REPORTS, 2019, 9 (1)
[3]   A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal [J].
Alekseev, A. E. ;
Vdovenko, V. S. ;
Gorshkov, B. G. ;
Potapov, V. T. ;
Simikin, D. E. .
LASER PHYSICS, 2014, 24 (11)
[4]  
[Anonymous], OPT FIB COMM C OFC 2
[5]  
[Anonymous], INTRO DISTRIBUTED FI
[6]  
[Anonymous], 43 WORKSH GEOTH RES
[7]  
[Anonymous], P SPIE
[8]  
[Anonymous], EARTHARXIV
[9]  
[Anonymous], SEG TECHNICAL PROGRA
[10]  
[Anonymous], J LIGHTWAVE TECHNOL