The physics of terahertz negative photoconductivity in low-dimensional materials

被引:17
|
作者
Kar, S. [1 ]
Lake, J. [1 ]
Adeyemo, S. O. [1 ]
Santra, T. S. [2 ]
Joyce, H. J. [1 ]
机构
[1] Univ Cambridge, Dept Elect Engn, Cambridge CB3 0FA, England
[2] Indian Inst Technol Madras, Dept Engn Design, Chennai 600036, Tamil Nadu, India
基金
欧洲研究理事会;
关键词
Terahertz spectroscopy; Negative terahertz photoconductivity; Layered materials; Low dimensional materials; Hot carriers; Surface effects; Trions; TRANSITION-METAL DICHALCOGENIDES; FIELD-EFFECT TRANSISTORS; LAYER MOS2; OPTICAL RECTIFICATION; TOPOLOGICAL INSULATOR; ELECTRONIC-PROPERTIES; CARRIER DYNAMICS; SINGLE; GRAPHENE; CONDUCTIVITY;
D O I
10.1016/j.mtphys.2022.100631
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Enhancement of conductivity is the common photoresponse when incident photons temporarily generate free carries after photoexcitation in a solid-crystalline-material. In sharp contrast, some emerging low dimensional materials such as graphene, transition-metal dichalcogenides, topological insulators, MXenes, and carbon nanotubes possess reduced terahertz-range conductivity after photoexcitation, a phenomenon that has attracted significant interest in the research community in recent years. Negative terahertz photoconductivity reveals a plethora of fascinating ultrafast processes involving photoexcited states and unveil their unique intrinsic characteristics. This review highlights these unconventional responses of charge carriers and discusses the underlying physics for contemporary layered and one-dimensional materials. These understandings reveal extraordinary photophysical properties of materials which are essential for designing high-frequency advanced optoelectronic devices. (C) 2022 Published by Elsevier Ltd.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Harmonic Generation in Low-Dimensional Materials
    Ullah, Kaleem
    Meng, Yafei
    Shi, Yi
    Wang, Fengqiu
    ADVANCED OPTICAL MATERIALS, 2022, 10 (07)
  • [22] Low-dimensional materials for photovoltaic application
    Kondrotas, Rokas
    Chen, Chao
    Liu, XinXing
    Yang, Bo
    Tang, Jiang
    JOURNAL OF SEMICONDUCTORS, 2021, 42 (03)
  • [23] An existence criterion for low-dimensional materials
    Chen, Jiapeng
    Wang, Biao
    Hu, Yangfan
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2017, 107 : 451 - 468
  • [24] Physics-Guided Neural Modeling for Low-Dimensional Thermoelectric Module
    Lee, Jonghwan
    IEEE ELECTRON DEVICE LETTERS, 2019, 40 (11) : 1812 - 1815
  • [25] Emerging low-dimensional materials for mid-infrared detection
    Wu, Jiangbin
    Wang, Nan
    Yan, Xiaodong
    Wang, Han
    NANO RESEARCH, 2021, 14 (06) : 1863 - 1877
  • [26] Buried graphene heterostructures for electrostatic doping of low-dimensional materials
    Gumprich, A.
    Liedtke, J.
    Beck, S.
    Chirca, I
    Potocnik, T.
    Alexander-Webber, J. A.
    Hofmann, S.
    Tappertzhofen, S.
    NANOTECHNOLOGY, 2023, 34 (26)
  • [27] Atomic imaging and spectroscopy of low-dimensional materials with interrupted periodicities
    Suenaga, Kazu
    Akiyama-Hasegawa, Kotone
    Niimi, Yoshiko
    Kobayashi, Haruka
    Nakamura, Midori
    Liu, Zheng
    Sato, Yuta
    Koshino, Masanori
    Iijima, Sumio
    JOURNAL OF ELECTRON MICROSCOPY, 2012, 61 (05): : 285 - 291
  • [28] Editorial: Ultrafast Photonics of Low-Dimensional Materials
    Li, Xiaohui
    Song, Zhuoying
    Zhang, Han
    Song, Yufeng
    Panajotov, Krassimir
    FRONTIERS IN PHYSICS, 2021, 8
  • [29] Spectroscopic ellipsometry for low-dimensional materials and heterostructures
    Yoo, SeokJae
    Park, Q-Han
    NANOPHOTONICS, 2022, 11 (12) : 2811 - 2825
  • [30] Graphene-analogous low-dimensional materials
    Tang, Qing
    Zhou, Zhen
    PROGRESS IN MATERIALS SCIENCE, 2013, 58 (08) : 1244 - 1315