Diffusion tensor imaging with multiple diffusion-weighted gradient directions

被引:1
|
作者
Jiang, Shan [1 ]
Liu, Meixia [1 ]
Han, Tong [2 ]
Liu, Weihua [1 ]
机构
[1] Tianjin Univ, Sch Mech Engn, Tianjin 300072, Peoples R China
[2] Tianjin Huanhu Hosp, Med Image Evaluat Ctr, Tianjin 300060, Peoples R China
基金
中国国家自然科学基金;
关键词
diffusion tensor imaging; neural tissue; tensor matrix; multiple linear regression; condition number; SAMPLING SCHEMES; WILD BOOTSTRAP; B-MATRIX; MRI; PARAMETERS; ANISOTROPY; SPECTROSCOPY; ACCURACY; SYSTEMS; ECHO;
D O I
10.3969/j.issn.1673-5374.2011.01.011
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Diffusion tensor MRI (DT-MRI or DTI) is emerging as an important non-invasive technology for elucidating internal brain structures. It has recently been utilized to diagnose a series of diseases that affect the integrity of neural systems to provide a basis for neuroregenerative studies. Results from the present study suggested that neural tissue is reconstructed with multiple diffusion-weighted gradient directions DTI, which varies from traditional imaging methods that utilize 6 gradient directions. Simultaneously, the diffusion tensor matrix is obtained by multiple linear regressions from an equation of echo signal intensity. The condition number value and standard deviation of fractional anisotropy for each scheme can be used to evaluate image quality. Results demonstrated that increasing gradient direction to some extent resulted in improved effects. Therefore, the traditional 6 and 15 directions should not be considered optimal scan protocols for clinical DTI application. In a scheme with 20 directions, the condition number and standard deviation of fractional anisotropy of the encoding gradients matrix were significantly reduced, and resulted in more clearly and accurately displayed neural tissue. Results demonstrated that the scheme with 20 diffusion gradient directions provided better accuracy of structural renderings and could be an optimal scan protocol for clinical DTI application.
引用
收藏
页码:66 / 71
页数:6
相关论文
共 50 条
  • [21] Diffusion-weighted and diffusion tensor magnetic resonance brain imaging: Principles and applications
    Pizzini, F
    Beltramello, A
    Piovan, E
    Alessandrini, F
    RIVISTA DI NEURORADIOLOGIA, 2003, 16 (02): : 207 - 220
  • [22] Diffusion-Weighted Imaging Thermometry in Multiple Sclerosis
    Sai, Asari
    Shimono, Taro
    Sakai, Koji
    Takeda, Akitoshi
    Shimada, Hiroyuki
    Tsukamoto, Taro
    Maeda, Hiroko
    Sakamoto, Shinichi
    Miki, Yukio
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2014, 40 (03) : 649 - 654
  • [23] Diffusion-weighted imaging
    Rovaris, M.
    Perego, E.
    Filippi, M.
    NEURODEGENERATION IN MULTIPLE SCLEROSIS, 2007, : 65 - +
  • [24] Diffusion-weighted imaging
    Zimmerman, RA
    CRITICAL REVIEWS IN NEUROSURGERY, 1997, 7 (04) : 221 - 227
  • [25] Diffusion-weighted imaging and diffusion tensor imaging in preoperative diagnostics [Diffusionsgewichtete Bildgebung und „diffusion tensor imaging“ in der präoperativen Diagnostik]
    Reith W.
    Der Radiologe, 2015, 55 (9): : 775 - 781
  • [26] Diffusion-weighted and diffusion tensor imaging in diagnosis and prognosis of traumatic brain injury (TBI)
    Zakharova, Natalia
    Kornienko, Valerii
    Potapov, Alexander
    Pronin, Igor
    Arutunov, Nikita
    Fadeeva, Ludmila
    JOURNAL OF NEUROTRAUMA, 2006, 23 (06) : 1040 - 1040
  • [27] Significance of diffusion-weighted imaging in acute multiple infarctions
    Jung, D. K.
    Bae, Y. J.
    Jeon, W. H.
    Park, S. P.
    Suh, C. K.
    EUROPEAN JOURNAL OF NEUROLOGY, 2005, 12 : 167 - 167
  • [28] Diffusion tensor imaging and diffusion-weighted imaging on axillary lymph node status in breast cancer patients
    Kurt, Nazmi
    Kurt, Busem Binboga
    Gulsaran, Ugur
    Uslu, Burak
    Celik, Ahmet Onur
    Sut, Necdet
    Tastekin, Ebru
    Karabulut, Derya
    Tuncbilek, Nermin
    DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2022, 28 (04): : 329 - 336
  • [29] Mitochondrial encephalomyopathy: Comparison of conventional MR imaging with diffusion-weighted and diffusion tensor imaging: Case report
    Majoie, CB
    Akkerman, EM
    Blank, C
    Barth, PG
    Poll-The, BT
    den Heeten, GJ
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2002, 23 (05) : 813 - 816
  • [30] Parallel imaging and diffusion tensor imaging for diffusion-weighted MRI of the liver: Preliminary experience in healthy volunteers
    Taouli, B
    Martini, AJ
    Qayyum, A
    Merriman, RB
    Vigneron, D
    Yeh, BM
    Coakley, FV
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2004, 183 (03) : 677 - 680