Fractional integral operators on anisotropic hardy spaces

被引:7
作者
Ding, Yong [1 ]
Lan, Senhua [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Mat Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Lishui Univ, Dept Math, Zhejiang 323000, Peoples R China
关键词
anisotropic Hardy space; weak anisotropic Hardy space; fractional integral; multilinear operator; commutator;
D O I
10.1007/s00020-008-1561-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the fractional integral operator T of degree a of order m with respect to a dilation A for 0 < alpha < 1 and m is an element of N. First we establish the Hardy-Littlewood-Sobolev inequalities for T on anisotropic Hardy spaces associated with dilation A, which show that T is bounded from H-p to H-q, or from H-p to L-q, where 0 < p <= 1/(1 + alpha) and 1/q = 1/p - alpha. Then we give anisotropic Hardy spaces estimates for a class of multilinear operators formed by fractional integrals or Calder'on-Zygmund singular integrals. Finally, we apply the above results to give the boundedness of the commutators of T and a BMO function.
引用
收藏
页码:329 / 356
页数:28
相关论文
共 23 条
[1]   Boundedness of operators on Hardy spaces via atomic decompositions [J].
Bownik, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) :3535-3542
[2]  
Bownik M, 2003, MEM AM MATH SOC, V164, P1
[3]   PARABOLIC MAXIMAL FUNCTIONS ASSOCIATED WITH A DISTRIBUTION [J].
CALDERON, AP ;
TORCHINSKY, A .
ADVANCES IN MATHEMATICS, 1975, 16 (01) :1-64
[4]   PARABOLIC MAXIMAL FUNCTIONS ASSOCIATED WITH A DISTRIBUTION .2. [J].
CALDERON, AP ;
TORCHINSKY, A .
ADVANCES IN MATHEMATICS, 1977, 24 (02) :101-171
[5]   A NOTE ON COMMUTATORS [J].
CHANILLO, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1982, 31 (01) :7-16
[6]  
COIFMAN R, 1993, J MATH PURE APPL, V72, P247
[7]  
Coifman R, 1992, REV MAT IBEROAM, V8, P45, DOI DOI 10.4171/RMI/116.MR1178448
[8]   FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES [J].
COIFMAN, RR ;
ROCHBERG, R ;
WEISS, G .
ANNALS OF MATHEMATICS, 1976, 103 (03) :611-635
[9]   Hardy spaces estimates for a class of multilinear homogeneous operators [J].
Ding, Y ;
Lu, SZ .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 1999, 42 (12) :1270-1278
[10]   Hardy spaces estimates for multilinear operators with homogeneous kernels [J].
Ding, Y ;
Lu, SZ .
NAGOYA MATHEMATICAL JOURNAL, 2003, 170 :117-133