We consider the problem of maximizing expected utility from consumption in a constrained incomplete semimartingale market with a random endowment process, and establish a general existence and uniqueness result using techniques from convex duality. The notion of "asymptotic elasticity" of Kramkov and Schachermayer is extended to the time-dependent case. By imposing no smoothness requirements on the utility function in the temporal argument, we can treat both pure consumption and combined consumption-terminal wealth problems in a common framework. To make the duality approach possible, we provide a detailed characterization of the enlarged dual domain which is reminiscent of the enlargement of L-1 to its topological bidual (L-infinity)*, a space of finitely additive measures. As an application, we treat a constrained Ito process market model, as well as a "totally incomplete" model.
机构:
CALTECH, Div Humanities & Social Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USACALTECH, Div Humanities & Social Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA
Cvitanic, Jaksa
Schachermayer, Walter
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, AustriaCALTECH, Div Humanities & Social Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA
Schachermayer, Walter
Wang, Hui
论文数: 0引用数: 0
h-index: 0
机构:
Brown Univ, Div Appl Math, Room 223,182 George St, Providence, RI 02912 USACALTECH, Div Humanities & Social Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA
机构:
Boston Univ, Dept Econ, Boston, MA 02215 USA
Hong Kong Univ Sci & Technol, Dept Finance, Kowloon, Hong Kong, Peoples R ChinaColumbia Business Sch, New York, NY 10027 USA
Miao, Jianjun
Wang, Neng
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Business Sch, New York, NY 10027 USA
Natl Bur Econ Res, Cambridge, MA 02138 USAColumbia Business Sch, New York, NY 10027 USA
机构:
Tbilisi State Univ, A Razmadze Math Inst, GE-0177 Tbilisi, Georgia
Georgian Amer Univ, GE-0193 Tbilisi, GeorgiaTbilisi State Univ, A Razmadze Math Inst, GE-0177 Tbilisi, Georgia
Mania, Michael
Tevzadze, Revaz
论文数: 0引用数: 0
h-index: 0
机构:
Georgian Tech Univ, Inst Cybernet, GE-0186 Tbilisi, GeorgiaTbilisi State Univ, A Razmadze Math Inst, GE-0177 Tbilisi, Georgia