Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions

被引:157
作者
Jaumot, M [1 ]
Hancock, JF [1 ]
机构
[1] Univ Queensland, Sch Med, Dept Pathol, Expt Oncol Lab, Brisbane, Qld 4006, Australia
基金
英国医学研究理事会;
关键词
Ras; Raf; 14-3-3; phophatases; plasma membrane;
D O I
10.1038/sj.onc.1204526
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Raf-1 activation is a complex process which involves plasma membrane recruitment, phosphorylation, protein-protein and lipid-protein interactions, We now show that PP1 and PP2A serine-threonine phosphatases also have a positive role in Ras dependent Raf-1 activation, General serine-threonine phosphatase inhibitors such sodium fluoride, or beta-glycerophosphate and sodium pyrophosphate, or specific PP1 and PP2A inhibitors including microcystin-LR, protein phosphatase 2A inhibitor I-1 or protein phosphatase inhibitor 2 all abrogate H-Ras and K-Ras dependent Raf-1 activation in vitro. A critical Raf-1 target residue for PP1 and PP2A is S259. Serine phosphatase inhibitors block the dephosphorylation of S259, which accompanies Raf-1 activation, and Ras dependent activation of mutant Raf259A is relatively resistant to serine phosphatase inhibitors. Sucrose gradient analysis demonstrates that serine phosphatase inhibition increases the total amount of 14-3-3 and Raf-1 associated with the plasma membrane and significantly alters the distribution of 14-3-3 and Raf-1 across different plasma membrane microdomains, These observations suggest that dephosphorylation of S259 is a critical early step in Ras dependent Raf-1 activation which facilitates 14-3-3 displacement. Inhibition of PP1 and PP2A therefore causes plasma membrane accumulation of Raf-1/14-3-3 complexes which cannot be activated.
引用
收藏
页码:3949 / 3958
页数:10
相关论文
共 69 条
[1]   Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation [J].
Abraham, D ;
Podar, K ;
Pacher, M ;
Kubicek, M ;
Welzel, N ;
Hemmings, BA ;
Dilworth, SM ;
Mischak, H ;
Kolch, W ;
Baccarini, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (29) :22300-22304
[2]  
CARROLL MP, 1994, J BIOL CHEM, V269, P1249
[3]   Signal transduction - Molecular switches in lipid rafts [J].
Cary, LA ;
Cooper, JA .
NATURE, 2000, 404 (6781) :945-947
[4]   Regulation of signal transduction by endocytosis [J].
Ceresa, BP ;
Schmid, SL .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (02) :204-210
[5]   Phosphatidylinositol 3-kinase regulates Raf1 through Pak phosphorylation of serine 338 [J].
Chaudhary, A ;
King, WG ;
Mattaliano, MD ;
Frost, JA ;
Diaz, B ;
Morrison, DK ;
Cobb, MH ;
Marshall, MS ;
Brugge, JS .
CURRENT BIOLOGY, 2000, 10 (09) :551-554
[6]   Disruption of Raf-1/heat shock protein 90 complex and Raf signaling by dexamethasone in mast cells [J].
Cissel, DS ;
Beaven, MA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (10) :7066-7070
[7]   14-3-3 zeta negatively regulates Raf-1 activity by interactions with the Raf-1 cysteine-rich domain [J].
Clark, GJ ;
Drugan, JK ;
Rossmann, KL ;
Carpenter, JW ;
RogersGraham, K ;
Fu, H ;
Der, CJ ;
Campbell, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (34) :20990-20993
[8]   Interaction of a receptor tyrosine kinase, EGF-R, with caveolins - Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities [J].
Couet, J ;
Sargiacomo, M ;
Lisanti, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (48) :30429-30438
[9]   The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation [J].
Daub, M ;
Jöckel, J ;
Quack, T ;
Weber, CK ;
Schmitz, F ;
Rapp, UR ;
Wittinghofer, A ;
Block, C .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (11) :6698-6710
[10]   REVERSAL OF RAF-1 ACTIVATION BY PURIFIED AND MEMBRANE-ASSOCIATED PROTEIN PHOSPHATASES [J].
DENT, P ;
JELINEK, T ;
MORRISON, DK ;
WEBER, MJ ;
STURGILL, TW .
SCIENCE, 1995, 268 (5219) :1902-1906