Site-Specific Synthesis of Silica Nanostructures on DNA Origami Templates

被引:70
作者
Shang, Yingxu [1 ,2 ]
Li, Na [1 ]
Liu, Shengbo [1 ,2 ]
Wang, Ling [3 ]
Wang, Zhen-Gang [1 ]
Zhang, Zhong [1 ]
Ding, Baoquan [1 ,2 ,4 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, 11 BeiYiTiao ZhongGuanCun, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Proc Engn, Key Lab Green Proc & Engn, Beijing Key Lab Ion Liquids Clean Proc, Beijing 100190, Peoples R China
[4] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
arbitrary patterns; DNA origami; silica nanostructures; site-specific synthesis; sol-gel chemistry; MESOPOROUS SILICA; BIOMINERALIZATION; GROWTH; NANOPARTICLES; SPHERES; METAL;
D O I
10.1002/adma.202000294
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
DNA origami has been widely investigated as a template for the organization of various functional elements, leading to potential applications in many fields such as biosensing, nanoelectronics, and nanophotonics. However, the synthesis of inorganic nonmetallic nanomaterials with predesigned patterns using DNA origami templates has seldom been explored. Here, a novel method is reported to site-specifically synthesize silica nanostructures with designed patterns on DNA origami templates. The molecular dynamic simulation confirms that the positively charged silica precursors have a stronger electrostatic affinity to protruding double-stranded DNA (dsDNA) than DNA origami surfaces. The work describes a novel strategy to fabricate silica nanostructures with nanoscale precision. Moreover, the site-specific silicification of DNA nanoarchitectures expands the scope of customized synthesis of inorganic nonmetallic nanomaterials.
引用
收藏
页数:5
相关论文
共 45 条
[1]   Transitioning DNA-Engineered Nanoparticle Superlattices from Solution to the Solid State [J].
Auyeung, Evelyn ;
Macfarlane, Robert J. ;
Choi, Chung Hang J. ;
Cutler, Joshua I. ;
Mirkin, Chad A. .
ADVANCED MATERIALS, 2012, 24 (38) :5181-5186
[2]   DNA-Mold Templated Assembly of Conductive Gold Nanowires [J].
Bayrak, Tuerkan ;
Helmi, Seham ;
Ye, Jingjing ;
Kauert, Dominik ;
Kelling, Jeffrey ;
Schoenherr, Tommy ;
Weichelt, Richard ;
Erbe, Artur ;
Seidel, Ralf .
NANO LETTERS, 2018, 18 (03) :2116-2123
[3]   Synthesis and characterization of multi-helical DNA-silica fibers [J].
Cao, Yuanyuan ;
Xie, Junjie ;
Liu, Ben ;
Han, Lu ;
Che, Shunai .
CHEMICAL COMMUNICATIONS, 2013, 49 (11) :1097-1099
[4]   Hybridization Chain Reaction Amplification of MicroRNA Detection with a Tetrahedral DNA Nanostructure-Based Electrochemical Biosensor [J].
Ge, Zhilei ;
Lin, Meihua ;
Wang, Ping ;
Pei, Hao ;
Yan, Juan ;
Sho, Jiye ;
Huang, Qing ;
He, Dannong ;
Fan, Chunhai ;
Zuo, Xiaolei .
ANALYTICAL CHEMISTRY, 2014, 86 (04) :2124-2130
[5]  
Hess O, 2012, NAT MATER, V11, P573, DOI [10.1038/NMAT3356, 10.1038/nmat3356]
[6]   Diatoms, Biomineralization Processes, and Genomics [J].
Hildebrand, Mark .
CHEMICAL REVIEWS, 2008, 108 (11) :4855-4874
[7]   DNA Nanotechnology-Enabled Drug Delivery Systems [J].
Hu, Qinqin ;
Li, Hua ;
Wang, Lihua ;
Gu, Hongzhou ;
Fan, Chunhai .
CHEMICAL REVIEWS, 2019, 119 (10) :6459-6506
[8]   Directing Single-Molecule Emission with DNA Origami-Assembled Optical Antennas [J].
Hubner, Kristina ;
Pilo-Pais, Mauricio ;
Selbach, Florian ;
Liedl, Tim ;
Tinnefeld, Philip ;
Stefani, Fernando D. ;
Acuna, Guillermo P. .
NANO LETTERS, 2019, 19 (09) :6629-6634
[9]   Novel Three-Dimensional Mesoporous Silicon for High Power Lithium-Ion Battery Anode Material [J].
Jia, Haiping ;
Gao, Pengfei ;
Yang, Jun ;
Wang, Jiulin ;
Nuli, Yanna ;
Yang, Zhi .
ADVANCED ENERGY MATERIALS, 2011, 1 (06) :1036-1039
[10]   Synthesis of a DNA-Silica Complex with Raire Two-Dimensional Square p4mm Symmetry [J].
Jin, Chenyu ;
Han, Lu ;
Che, Shunai .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (49) :9268-9272