Generation of nuclear data using Gaussian process regression

被引:15
|
作者
Iwamoto, Hiroki [1 ]
机构
[1] Japan Atom Energy Agcy, Nucl Sci & Engn Ctr, Tokai, Ibaraki, Japan
关键词
Gaussian process regression; nuclear data; nuclide production cross-section; uncertainty; CROSS-SECTIONS; NUCLIDE PRODUCTION; DATA LIBRARY; CODE; NI; SIMULATION; ELEMENTS; URANIUM; FE; MG;
D O I
10.1080/00223131.2020.1736202
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A new approach for generating nuclear data from experimental cross-section data is presented based on Gaussian process regression. This paper focuses on the generation of nuclear data for proton-induced nuclide production cross-sections with a nickel target. Our results provide reasonable regression curves and corresponding uncertainties and demonstrate that this approach is effective for generating nuclear data. Additionally, our results indicate that this approach can be applied in experimental design to reduce the uncertainty of generated nuclear data.
引用
收藏
页码:932 / 938
页数:7
相关论文
共 50 条
  • [41] Rate coefficient function estimation using Gaussian process regression
    Abrantes, Richard J. E.
    Mao, Yun-Wen
    Ren, David D. W.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2022, 283
  • [42] Forecasting tunnel path geology using Gaussian process regression
    Mahmoodzadeh, Arsalan
    Mohammadi, Mokhtar
    Abdulhamid, Sazan Nariman
    Ali, Hunar Farid Hama
    Ibrahim, Hawkar Hashim
    Rashidi, Shima
    GEOMECHANICS AND ENGINEERING, 2022, 28 (04) : 359 - 374
  • [43] Tunnel geomechanical parameters prediction using Gaussian process regression
    Mahmoodzadeh, Arsalan
    Mohammadi, Mokhtar
    Ibrahim, Hawkar Hashim
    Rashid, Tarik Ahmed
    Aldalwie, Adil Hussain Mohammed
    Ali, Hunar Farid Hama
    Daraei, Ako
    MACHINE LEARNING WITH APPLICATIONS, 2021, 3
  • [44] Reliability of Surface Response to Excitation Method for Data-Driven Prognostics Using Gaussian Process Regression
    Fekrmandi, H.
    Gwon, Y. S.
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS XII, 2018, 10600
  • [45] A Bayesian data modelling framework for chemical processes using adaptive sequential design with Gaussian process regression
    Fleming, Liam
    Emerson, Joseph
    Stitt, Hugh
    Zhang, Jie
    Coleman, Shirley
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2022, 38 (05) : 787 - 805
  • [46] Lagrangian analysis of submesoscale flows from sparse data using Gaussian Process Regression for field reconstruction
    Aravind, H. M.
    Ozgokmen, Tamay M.
    Allshouse, Michael R.
    OCEAN MODELLING, 2025, 193
  • [47] Using Gaussian process regression for building a data-driven drag loss model of wet clutches
    Pointner-Gabriel, Lukas
    Steiner, Martin
    Voelkel, Katharina
    Stahl, Karsten
    TRIBOLOGY INTERNATIONAL, 2024, 198
  • [48] PROSODY GENERATION USING FRAME-BASED GAUSSIAN PROCESS REGRESSION AND CLASSIFICATION FOR STATISTICAL PARAMETRIC SPEECH SYNTHESIS
    Koriyama, Tomoki
    Kobayashi, Takao
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 4929 - 4933
  • [49] Optimal computation budget allocation with Gaussian process regression
    Hu, Mingjie
    Xu, Jie
    Chen, Chun-Hung
    Hu, Jian-Qiang
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2025, 322 (01) : 147 - 156
  • [50] Nonparametric identification of batch process using two-dimensional kernel-based Gaussian process regression
    Chen, Minghao
    Xu, Zuhua
    Zhao, Jun
    Zhu, Yucai
    Shao, Zhijiang
    CHEMICAL ENGINEERING SCIENCE, 2022, 250