Gaussian process regression;
nuclear data;
nuclide production cross-section;
uncertainty;
CROSS-SECTIONS;
NUCLIDE PRODUCTION;
DATA LIBRARY;
CODE;
NI;
SIMULATION;
ELEMENTS;
URANIUM;
FE;
MG;
D O I:
10.1080/00223131.2020.1736202
中图分类号:
TL [原子能技术];
O571 [原子核物理学];
学科分类号:
0827 ;
082701 ;
摘要:
A new approach for generating nuclear data from experimental cross-section data is presented based on Gaussian process regression. This paper focuses on the generation of nuclear data for proton-induced nuclide production cross-sections with a nickel target. Our results provide reasonable regression curves and corresponding uncertainties and demonstrate that this approach is effective for generating nuclear data. Additionally, our results indicate that this approach can be applied in experimental design to reduce the uncertainty of generated nuclear data.
机构:
Kumoh Natl Inst Technol, Dept Aeronaut Mech & Elect Convergence Engn, Gumi, South KoreaKumoh Natl Inst Technol, Dept Aeronaut Mech & Elect Convergence Engn, Gumi, South Korea
Njoku, Judith Nkechinyere
Morocho-Cayamcela, Manuel Eugenio
论文数: 0引用数: 0
h-index: 0
机构:
Yachay Tech Univ, Sch Math & Computat Sci, San Miguel De Urcuqui, EcuadorKumoh Natl Inst Technol, Dept Aeronaut Mech & Elect Convergence Engn, Gumi, South Korea
Morocho-Cayamcela, Manuel Eugenio
Caliwag, Angela
论文数: 0引用数: 0
h-index: 0
机构:
Kumoh Natl Inst Technol, Dept Aeronaut Mech & Elect Convergence Engn, Gumi, South KoreaKumoh Natl Inst Technol, Dept Aeronaut Mech & Elect Convergence Engn, Gumi, South Korea