Generation of nuclear data using Gaussian process regression

被引:15
|
作者
Iwamoto, Hiroki [1 ]
机构
[1] Japan Atom Energy Agcy, Nucl Sci & Engn Ctr, Tokai, Ibaraki, Japan
关键词
Gaussian process regression; nuclear data; nuclide production cross-section; uncertainty; CROSS-SECTIONS; NUCLIDE PRODUCTION; DATA LIBRARY; CODE; NI; SIMULATION; ELEMENTS; URANIUM; FE; MG;
D O I
10.1080/00223131.2020.1736202
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A new approach for generating nuclear data from experimental cross-section data is presented based on Gaussian process regression. This paper focuses on the generation of nuclear data for proton-induced nuclide production cross-sections with a nickel target. Our results provide reasonable regression curves and corresponding uncertainties and demonstrate that this approach is effective for generating nuclear data. Additionally, our results indicate that this approach can be applied in experimental design to reduce the uncertainty of generated nuclear data.
引用
收藏
页码:932 / 938
页数:7
相关论文
共 50 条
  • [1] Automatic fault detection in seismic data using Gaussian process regression
    Noori, Maryam
    Hassani, Hossein
    Javaherian, Abdolrahim
    Amindavar, Hamidreza
    Torabi, Siyavash
    JOURNAL OF APPLIED GEOPHYSICS, 2019, 163 : 117 - 131
  • [2] Parametric Gaussian process regression for big data
    Maziar Raissi
    Hessam Babaee
    George Em Karniadakis
    Computational Mechanics, 2019, 64 : 409 - 416
  • [3] Parametric Gaussian process regression for big data
    Raissi, Maziar
    Babaee, Hessam
    Karniadakis, George Em
    COMPUTATIONAL MECHANICS, 2019, 64 (02) : 409 - 416
  • [4] Dealing with Observation Outages within Navigation Data using Gaussian Process Regression
    Chen, Hongmei
    Cheng, Xianghong
    Wang, Haipeng
    Han, Xu
    JOURNAL OF NAVIGATION, 2014, 67 (04) : 603 - 615
  • [5] Edge Tracing Using Gaussian Process Regression
    Burke, Jamie
    King, Stuart
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 138 - 148
  • [6] Thermal matching using Gaussian process regression
    Pearce, Robert
    Ireland, Peter
    Romero, Eduardo
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2020, 234 (06) : 1172 - 1180
  • [7] Spatial prediction of rockhead profile using the Gaussian process regression method
    Deng, Zhi-Ping
    Pan, Min
    Niu, Jing-Tai
    Jiang, Shui-Hua
    Wu, Bang-bin
    Li, Shuang-long
    CANADIAN GEOTECHNICAL JOURNAL, 2023, 60 (12) : 1849 - 1860
  • [8] Predicting target data rates for dynamic spectrum allocation using Gaussian process regression
    Njoku, Judith Nkechinyere
    Morocho-Cayamcela, Manuel Eugenio
    Caliwag, Angela
    Xiao, Pei
    Lim, Wansu
    ICT EXPRESS, 2022, 8 (02): : 207 - 212
  • [9] Infrastructure recovery curve estimation using Gaussian process regression on expert elicited data
    Quoc Dung Cao
    Miles, Scott B.
    Choe, Youngjun
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 217
  • [10] Data Driven Prognosis of Fracture Dynamics Using Tensor Train and Gaussian Process Regression
    Duong, Pham Luu Trung
    Hussain, Shaista
    Jhon, Mark Hyunpong
    Raghavan, Nagarajan
    IEEE ACCESS, 2020, 8 : 222256 - 222266