On semi-convergence of parameterized SHSS method for a class of singular complex symmetric linear systems

被引:6
|
作者
Li, Cheng-Liang [1 ,2 ]
Ma, Chang-Feng [1 ]
机构
[1] Fujian Normal Univ, Sch Math & Informat, Fuzhou 350117, Fujian, Peoples R China
[2] Fujian Normal Univ, FJKLMAA, Fuzhou 350117, Fujian, Peoples R China
基金
美国国家科学基金会;
关键词
Complex linear systems; Iterative method; Semi-convergence; Preconditioning; FOURIER COLLOCATION METHODS; HERMITIAN SPLITTING METHODS; HSS METHOD; BIFURCATION;
D O I
10.1016/j.camwa.2018.09.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the parameterized single-step HSS (P-SHSS) iterative method to solve a broad class of singular complex symmetric linear systems. The semi-convergence properties of the P-SHSS method are derived under suitable conditions. Moreover, some properties of the preconditioned matrix and the optimal parameters are analyzed in detail. Numerical experiments are given to support our theoretical results and show the effectiveness of the P-SHSS method either as a solver or as a preconditioner. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:466 / 475
页数:10
相关论文
共 50 条
  • [21] SEMI-CONVERGENCE ANALYSIS OF THE INEXACT UZAWA METHOD FOR SINGULAR SADDLE POINT PROBLEMS
    Li, Jian-Lei
    Huang, Ting-Zhu
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2012, 53 (01): : 61 - 70
  • [22] SEMI-CONVERGENCE OF THE GENERALIZED LOCAL HSS METHOD FOR SINGULAR SADDLE POINT PROBLEMS
    Miao, Shu-Xin
    Cao, Yang
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2014, 55 (02): : 71 - 80
  • [23] On semi-convergence and inexact iteration of the GSS iteration method for nonsymmetric singular saddle point problems
    Huang, Zhuo-Hong
    Huang, Ting-Zhu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (01) : 805 - 818
  • [24] Semi-convergence analysis of Uzawa–AOR method for singular saddle point problems
    Jin-Song Xiong
    Xing-Bao Gao
    Computational and Applied Mathematics, 2017, 36 : 383 - 395
  • [25] A parameterized splitting iteration method for complex symmetric linear systems
    Zhang, Guo-Feng
    Zheng, Zhong
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2014, 31 (02) : 265 - 278
  • [26] Semi-convergence analysis of Uzawa-AOR method for singular saddle point problems
    Xiong, Jin-Song
    Gao, Xing-Bao
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (01) : 383 - 395
  • [27] A parameterized splitting iteration method for complex symmetric linear systems
    Guo-Feng Zhang
    Zhong Zheng
    Japan Journal of Industrial and Applied Mathematics, 2014, 31 : 265 - 278
  • [28] On semi-convergence of a class of Uzawa methods for singular saddle-point problems
    Liang, Zhao-Zheng
    Zhang, Guo-Feng
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 397 - 409
  • [29] Semi-Convergence Analysis of Uzawa Splitting Iteration Method for Singular Saddle Point Problems
    Li, Jingtao
    Ma, Changfeng
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (02) : 235 - 246
  • [30] On semi-convergence of the Uzawa-HSS method for singular saddle-point problems
    Yang, Ai-Li
    Li, Xu
    Wu, Yu-Jiang
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 252 : 88 - 98