Phase-field modeling of temperature gradient driven pore migration coupling with thermal conduction

被引:37
|
作者
Zhang, Liangzhe [1 ]
Tonks, Michael R. [1 ]
Millett, Paul C. [1 ]
Zhang, Yongfeng [1 ]
Chockalingam, Karthikeyan [1 ]
Biner, Bulent [1 ]
机构
[1] Idaho Natl Lab, Fuels Modeling & Simulat Dept, Idaho Falls, ID 83415 USA
关键词
Phase-field; Soret effect; Pore migration; Thermal conductivity; SINTERED URANIUM DIOXIDE; COLUMNAR GRAIN GROWTH; MICROSTRUCTURE EVOLUTION; VOID MIGRATION; FUEL RODS; SIMULATION; KINETICS;
D O I
10.1016/j.commatsci.2012.01.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Pore migration in a temperature gradient (Soret effect) is investigated by a phase-field model coupled with a heat transfer calculation. Pore migration is observed towards the high temperature domain with velocities that agree with analytical solution. Due to the low thermal conductivity of the pores, the temperature gradient across individual pores is increased, which in turn, accelerates the pore migration. In particular, for pores filled with xenon and helium, the pore velocities are increased by a factor of 2.2 and 2.1, respectively. A quantitative equation is then derived to predict the influence of the low thermal conductivity of pores. Published by Elsevier B. V.
引用
收藏
页码:161 / 165
页数:5
相关论文
共 50 条
  • [41] Simulation of grain growth and pore migration in a thermal gradient
    Tikare, V
    Holm, EA
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1998, 81 (03) : 480 - 484
  • [42] Phase-field modeling of ductile fracture
    M. Ambati
    T. Gerasimov
    L. De Lorenzis
    Computational Mechanics, 2015, 55 : 1017 - 1040
  • [43] Phase-field modeling of rapid solidification
    Kim, SG
    Kim, WT
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 304 (1-2): : 281 - 286
  • [44] Phase-field modeling of eutectic growth
    Drolet, François
    Elder, K.R.
    Grant, Martin
    Kosterlitz, J.M.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (06): : 6705 - 6720
  • [45] Phase-field modeling of eutectic growth
    Drolet, F
    Elder, KR
    Grant, M
    Kosterlitz, JM
    PHYSICAL REVIEW E, 2000, 61 (06): : 6705 - 6720
  • [46] Phase-field model for collective cell migration
    Najem, Sara
    Grant, Martin
    PHYSICAL REVIEW E, 2016, 93 (05)
  • [47] Phase-field modeling of surface diffusion
    Kassner, Klaus
    Spatschek, Robert
    Gugenberger, Clemens
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2010, 101 (04) : 456 - 461
  • [48] Phase-field modeling of ductile fracture
    Ambati, M.
    Gerasimov, T.
    De Lorenzis, L.
    COMPUTATIONAL MECHANICS, 2015, 55 (05) : 1017 - 1040
  • [49] Phase-field modeling for electrodeposition process
    Shibuta, Yasushi
    Okajima, Yoshinao
    Suzuki, Toshio
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2007, 8 (06) : 511 - 518
  • [50] Phase-field modeling of hydraulic fracture
    Wilson, Zachary A.
    Landis, Chad M.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2016, 96 : 264 - 290