Naively Haar null sets in Polish groups

被引:3
|
作者
Elekes, Marton [1 ,2 ]
Vidnyanszky, Zoltan [1 ]
机构
[1] Hungarian Acad Sci, Atfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
[2] Eotvos Lorand Univ, Dept Anal, Pazmany Ps 1-c, H-1117 Budapest, Hungary
关键词
Polish groups; Haar null; Christensen; Shy; Universally measurable; Problem FC; SUBGROUPS;
D O I
10.1016/j.jmaa.2016.08.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (G,.) be a Polish group. We say that a set X subset of G is Haar null if there exists a universally measurable set U superset of X and a Borel probability measure mu such that for every g,h epsilon G we have mu,(gUh) = 0. We call a set X naively Haar null if there exists a Borel probability measure A such that for every g, h epsilon G we have mu(gXh) = 0. Generalizing a result of Elekes and Steprans, which answers the first part of Problem FC from Fremlin's list, we prove that in every abelian Polish group there exists a naively Haar null set that is not Haar null. (C) 2016 Published by Elsevier Inc.
引用
收藏
页码:193 / 200
页数:8
相关论文
共 35 条
  • [1] Cardinal invariants of Haar null and Haar meager sets
    Elekes, Marton
    Poor, Mark
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (05) : 1568 - 1594
  • [2] Haar null and Haar meager sets: a survey and new results
    Elekes, Marton
    Nagy, Donat
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2020, 52 (04) : 561 - 619
  • [3] Haar Null Sets and the Consistent Reflection of Non-meagreness
    Elekes, Marton
    Steprans, Juris
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (02): : 303 - 322
  • [4] Low-complexity Haar null sets without Gδ hulls in Zω
    Nagy, Donat
    FUNDAMENTA MATHEMATICAE, 2019, 246 (03) : 275 - 287
  • [5] BRUCKNER-GARG-TYPE RESULTS WITH RESPECT TO HAAR NULL SETS IN C[0,1]
    Balka, Richard
    Darji, Udayan B.
    Elekes, Marton
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2017, 60 (01) : 17 - 30
  • [6] Haar meager sets, their hulls, and relationship to compact sets
    Dolezal, Martin
    Vlasak, Vaclav
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (01) : 852 - 863
  • [7] Homomorphism reductions on Polish groups
    Konstantinos A. Beros
    Archive for Mathematical Logic, 2018, 57 : 795 - 807
  • [8] Galois groups as quotients of Polish groups
    Krupinski, Krzysztof
    Rzepecki, Tomasz
    JOURNAL OF MATHEMATICAL LOGIC, 2020, 20 (03)
  • [9] Polish groups of unitaries
    Ando, Hiroshi
    Matsuzawa, Yasumichi
    STUDIA MATHEMATICA, 2021, 257 (01) : 25 - 70
  • [10] Comparing notions of presentability in Polish spaces and Polish groups
    Ben-Shahar, Sapir
    Koh, Heer Tern
    ANNALS OF PURE AND APPLIED LOGIC, 2025, 176 (05)