Parton-like soliton structures in nonlinear coherent states

被引:4
作者
Belyaeva, T. L. [1 ]
Kovachev, L. M. [2 ]
Serkin, V. N. [3 ]
机构
[1] Univ Autonoma Estado Mexico, Av Inst Literario 100, Toluca 50000, Mexico
[2] Bulgarian Acad Sci, Inst Elect, Sofia 1784, Bulgaria
[3] Benemerita Univ Autonoma Puebla, Av 4 Sur 104, Puebla 72001, Mexico
来源
OPTIK | 2020年 / 210卷
关键词
Schrodinger equation with confining harmonic oscillator potential; Nonlinear analogues of coherent states; Nonlinear analogue of parton model; SCHRODINGER-EQUATION MODEL; GRAVITATIONAL-LIKE POTENTIALS; SUPERCONTINUUM GENERATION; NONAUTONOMOUS SOLITONS; FEMTOSECOND PULSES; VARYING DISPERSION; QUASI-SOLITON; WAVE; PROPAGATION; DYNAMICS;
D O I
10.1016/j.ijleo.2020.164483
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nonlinear analogues of coherent states arise in the framework of the nonlinear Schrodinger equation models with confining harmonic oscillator potentials. We clarify the profound physical linkage between the quantum-mechanical Schrodinger coherent states and their nonlinear solitonic analogues. Guided by remarkable, but obviously only formal analogy between the soliton negative self-action energy and the nuclear binding energy, we reveal how the nonlinear ground and coherent states could be built up from the parton-like solitonic constituents when the absolute value of the soliton binding energy increases. The enhancement of the soliton binding energy contribution in the total conserved energy of the nonlinear ground and coherent states radically changes their internal structures and allows one to apply the formal analogies from the parton model of nucleons.
引用
收藏
页数:12
相关论文
共 112 条
[1]  
Agrawal G. A., 2002, Fiber optic communication systems, V3rd
[2]   Trinocular stereo using shortest paths and the ordering constraint [J].
Agrawal, M ;
Davis, LS .
IEEE WORKSHOP ON STEREO AND MULTI-BASELINE VISION, PROCEEDINGS, 2001, :3-9
[3]   Graded-index solitons in multimode fibers [J].
Ahsan, Amira S. ;
Agrawal, Govind P. .
OPTICS LETTERS, 2018, 43 (14) :3345-3348
[4]   Nonlinear modes for the Gross-Pitaevskii equation - a demonstrative computation approach [J].
Alfimov, G. L. ;
Zezyulin, D. A. .
NONLINEARITY, 2007, 20 (09) :2075-2092
[5]   SOLITON CROSS-TRAPPING - NEW METHOD FOR BRIGHT SOLITON TRANSMISSION AT NORMAL GROUP-VELOCITY DISPERSION [J].
ANDERSON, D ;
HOOK, A ;
LISAK, M ;
SERKIN, VN ;
AFANASJEV, VV .
ELECTRONICS LETTERS, 1992, 28 (19) :1797-1798
[6]   The power of analogies [J].
不详 .
NATURE PHOTONICS, 2014, 8 (01) :1-1
[7]  
[Anonymous], 1992, OPTICAL SOLITONS
[8]  
[Anonymous], 2011, LMS Lecture Note Series
[9]  
[Anonymous], 2006, Solitons in optical fibers: fundamentals and applications
[10]   Geometric parametric instability in periodically modulated graded-index multimode fibers [J].
Arabi, C. Mas ;
Kudlinski, A. ;
Mussot, A. ;
Conforti, M. .
PHYSICAL REVIEW A, 2018, 97 (02)