Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure

被引:438
作者
Wu, S. W. [1 ,2 ,3 ]
Wang, G. [1 ,2 ,3 ]
Wang, Q. [1 ]
Jia, Y. D. [1 ]
Yi, J. [1 ]
Zhai, Q. J. [1 ,2 ,3 ]
Liu, J. B. [4 ]
Sun, B. A. [5 ]
Chu, H. J. [2 ,3 ,6 ]
Shen, J. [7 ]
Liaw, P. K. [8 ]
Liu, C. T. [9 ]
Zhang, T. Y. [2 ,3 ]
机构
[1] Shanghai Univ, Inst Mat, Lab Microstruct, Shanghai 20044, Peoples R China
[2] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Shanghai Mat Genome Inst, Shanghai 200444, Peoples R China
[4] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
[5] Chinese Acad Sci, Inst Phys, Beijing, Peoples R China
[6] Shanghai Univ, Dept Mech, Shanghai 20044, Peoples R China
[7] Shenzhen Univ, Coll Mechatron & Control Engn, Shenzhen 518060, Peoples R China
[8] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[9] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会; 上海市自然科学基金;
关键词
High-entropy alloys; Heterogeneous structure; Strength-ductility trade-off; Dislocation; Twin; MECHANICAL-PROPERTIES; MICROSTRUCTURAL EVOLUTION; FATIGUE BEHAVIOR; DEFORMATION; STEEL; PLASTICITY; DEPENDENCE; STABILITY; STRESS;
D O I
10.1016/j.actamat.2018.12.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The improvement in strength is usually accompanied by ductility loss in structural materials, which is a long-standing conflict referred as the strength-ductility trade-off. Here we present a heterogeneous-structures-architecting strategy, in which we design bulk high-entropy alloys with the largely enhanced strength-ductility trade-off, possessing a yield strength of 711 MPa, a tensile strength of 928 MPa, and a uniform elongation of 30.3%. Such an enhancement of the strength-ductility trade-off is due to the microstructure comprised with a combination of the non-recrystallized and recrystallized grains arranged in complex heterogeneous structures with a characteristic dimension spanning from the submicron scale to the coarse-sized scale. The heterogeneous structures in the high-entropy alloy are produced by cold-rolling, followed by intermediate-temperature-annealing. Our results demonstrate that heterogeneous designs can be accomplished effectively by simple thermal treatments, which offer a design strategy towards a new generation of high-strength and high-ductility high-entropy alloys. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:444 / 458
页数:15
相关论文
共 70 条
[41]   An assessment on the future development of high-entropy alloys: Summary from a recent workshop [J].
Lu, Z. P. ;
Wang, H. ;
Chen, M. W. ;
Baker, I. ;
Yeh, J. W. ;
Liu, C. T. ;
Nieh, T. G. .
INTERMETALLICS, 2015, 66 :67-76
[42]   Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures [J].
Ma, Yan ;
Yuan, Fuping ;
Yang, Muxin ;
Jiang, Ping ;
Ma, Evan ;
Wu, Xiaolei .
ACTA MATERIALIA, 2018, 148 :407-418
[43]   A critical review of high entropy alloys and related concepts [J].
Miracle, D. B. ;
Senkov, O. N. .
ACTA MATERIALIA, 2017, 122 :448-511
[44]   Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries [J].
Otto, F. ;
Hanold, N. L. ;
George, E. P. .
INTERMETALLICS, 2014, 54 :39-48
[45]   The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J].
Otto, F. ;
Dlouhy, A. ;
Somsen, Ch. ;
Bei, H. ;
Eggeler, G. ;
George, E. P. .
ACTA MATERIALIA, 2013, 61 (15) :5743-5755
[46]   Effect of annealing heat treatment on microstructural evolution and tensile behavior of Al0.5CoCrFeMnNi high-entropy alloy [J].
Park, Jeong Min ;
Moon, Jongun ;
Bae, Jae Wung ;
Jung, Jaimyun ;
Lee, Sunghak ;
Kim, Hyoung Seop .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 728 :251-258
[47]   Slip nucleation in single crystal FeNiCoCrMn high entropy alloy [J].
Patriarca, L. ;
Ojha, A. ;
Sehitoglu, H. ;
Chumlyakov, Y. I. .
SCRIPTA MATERIALIA, 2016, 112 :54-57
[48]  
Ritchie RO, 2011, NAT MATER, V10, P817, DOI [10.1038/NMAT3115, 10.1038/nmat3115]
[49]   Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation [J].
Schuh, B. ;
Mendez-Martin, F. ;
Voelker, B. ;
George, E. P. ;
Clemens, H. ;
Pippan, R. ;
Hohenwarter, A. .
ACTA MATERIALIA, 2015, 96 :258-268
[50]   Accelerated exploration of multi-principal element alloys with solid solution phases [J].
Senkov, O. N. ;
Miller, J. D. ;
Miracle, D. B. ;
Woodward, C. .
NATURE COMMUNICATIONS, 2015, 6