New directional vector limiters for discontinuous Galerkin methods

被引:13
作者
Hajduk, Hennes [1 ]
Kuzmin, Dmitri [1 ]
Aizinger, Vadym [2 ,3 ]
机构
[1] TU Dortmund Univ, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, Germany
[2] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Handelshafen 12, D-27570 Bremerhaven, Germany
[3] Univ Erlangen Nurnberg, Appl Math 1, Cauerstr 11, D-91058 Erlangen, Germany
关键词
Hyperbolic conservation laws; Discontinuous Galerkin methods; Vector limiters; Objectivity; Shallow water equations; Euler equations; MATLAB/GNU OCTAVE TOOLBOX; FRAME-INVARIANT; SLOPE LIMITERS; SCHEMES; FESTUNG; FLOW; APPROXIMATION; TRANSPORT;
D O I
10.1016/j.jcp.2019.01.032
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Second and higher order numerical approximations of conservation laws for vector fields call for the use of limiting techniques based on generalized monotonicity criteria. In this paper, we introduce a family of directional vertex-based slope limiters for tensorvalued gradients of formally second-order accurate piecewise-linear discontinuous Galerkin (DG) discretizations. The proposed methodology enforces local maximum principles for scalar products corresponding to projections of a vector field onto the unit vectors of a frame-invariant orthogonal basis. In particular, we consider anisotropic limiters based on singular value decompositions and the Gram-Schmidt orthogonalization procedure. The proposed extension to hyperbolic systems features a sequential limiting strategy and a global invariant domain fix. The pros and cons of different approaches to vector limiting are illustrated by the results of numerical studies for the two-dimensional shallow water equations and for the Euler equations of gas dynamics. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:308 / 325
页数:18
相关论文
共 42 条
  • [31] Slope limiting for vectors: A novel vector limiting algorithm
    Luttwak, Gabi
    Falcovitz, Joseph
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (11-12) : 1365 - 1375
  • [32] Staggered Lagrangian Discretization Based on Cell-Centered Riemann Solver and Associated Hydrodynamics Scheme
    Maire, Pierre-Henri
    Loubere, Raphael
    Vachal, Pavel
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 10 (04) : 940 - 978
  • [33] A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids
    Maire, Pierre-Henri
    [J]. COMPUTERS & FLUIDS, 2011, 46 (01) : 341 - 347
  • [34] Positivity-Preserving Discontinuous Galerkin Methods with Lax-Wendroff Time Discretizations
    Moe, Scott A.
    Rossmanith, James A.
    Seal, David C.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2017, 71 (01) : 44 - 70
  • [35] FESTUNG: A MATLAB/GNU Octave toolbox for the discontinuous Galerkin method, Part II: Advection operator and slope limiting
    Reuter, Balthasar
    Aizinger, Vadym
    Wieland, Manuel
    Frank, Florian
    Knabner, Peter
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (07) : 1896 - 1925
  • [36] Sedov L. I., 1959, SIMILARITY DIMENSION
  • [37] A test suite for quantitative comparison of hydrodynamic codes in astrophysics
    Tasker, Elizabeth J.
    Brunino, Riccardo
    Mitchell, Nigel L.
    Michielsen, Dolf
    Hopton, Stephen
    Pearce, Frazer R.
    Bryan, Greg L.
    Theuns, Tom
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 390 (03) : 1267 - 1281
  • [38] Symmetry- and essentially-bound-preserving flux-corrected remapping of momentum in staggered ALE hydrodynamics
    Velechovsky, J.
    Kucharik, M.
    Liska, R.
    Shashkov, M.
    Vachal, P.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 255 : 590 - 611
  • [39] THE NUMERICAL-SIMULATION OF TWO-DIMENSIONAL FLUID-FLOW WITH STRONG SHOCKS
    WOODWARD, P
    COLELLA, P
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 54 (01) : 115 - 173
  • [40] Zalesak S.T., 2012, Flux-Corrected Transport: Principles, Algorithms, and Applications, P23, DOI [10.1007/978-94-007-4038-9_2, DOI 10.1007/978-94-007-4038-9_2]