Laser-induced breakdown spectroscopy in a running Hall Effect Thruster for space propulsion

被引:18
作者
Balika, L. [2 ]
Focsa, C. [1 ]
Gurlui, S. [3 ]
Pellerin, S. [2 ]
Pellerin, N. [4 ]
Pagnon, D. [5 ]
Dudeck, M. [6 ]
机构
[1] Univ Lille 1, UMR 8523, Lab Phys Lasers Atomes & Mol, F-59655 Villeneuve Dascq, France
[2] Univ Orleans, CNRS, UMR 7344, Grp Rech Energet Milieux Ionises, F-45062 Orleans, France
[3] Alexandru Ioan Cuza Univ, Dept Phys, Iasi 700506, Romania
[4] Univ Orleans, CNRS, UPR 3079, F-45071 Orleans 2, France
[5] Univ Paris 11, CNRS, UMR 8578, Lab Phys Gaz & Plasmas, F-91405 Orsay, France
[6] Univ Paris 06, Inst Jean Le Rond dAlembert, F-75252 Paris, France
关键词
Electric space propulsion; Hall Effect Thruster; Erosion; Optical emission spectroscopy; Actinomeny; STATIONARY PLASMA THRUSTERS; WALL;
D O I
10.1016/j.sab.2012.06.030
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Hall Effect Thrusters (HETs) are promising electric propulsion devices for the station-keeping of geostationary satellites and for interplanetary missions. The main limiting factor of the HET lifetime is the erosion of the annular channel ceramic walls. Erosion monitoring has been performed in the laboratory using optical emission spectroscopy (OES) measurements and data treatment based on the coronal model and the actinometric hypothesis. This study uses laser ablation of the ceramic wall in a running HET in order to introduce controlled amounts of sputtered material in the thruster plasma. The transient laser-induced breakdown plasma expands orthogonally in a steady-state plasma jet created by the HET discharge. The proposed spectroscopic method involves species from both plasmas (B, Xe, Xe+). The optical emission signal is correlated to the ablated volume (measured by profilometry) leading to the first direct validation of the actinometric hypothesis in this frame and opening the road for calibration of in-fiight erosion monitoring based on the OES method. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:184 / 189
页数:6
相关论文
共 15 条
[1]  
[Anonymous], 1997, Spacecraft dynamics and control: a practical engineering approach, DOI DOI 10.1017/CBO9780511815652
[2]   Wall material effects in stationary plasma thrusters. II. Near-wall and in-wall conductivity [J].
Barral, S ;
Makowski, K ;
Peradzynski, Z ;
Gascon, N ;
Dudeck, M .
PHYSICS OF PLASMAS, 2003, 10 (10) :4137-4152
[3]   Low frequency oscillations in a stationary plasma thruster [J].
Boeuf, JP ;
Garrigues, L .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (07) :3541-3554
[4]   OPTICAL-EMISSION SPECTROSCOPY OF REACTIVE PLASMAS - A METHOD FOR CORRELATING EMISSION INTENSITIES TO REACTIVE PARTICLE DENSITY [J].
COBURN, JW ;
CHEN, M .
JOURNAL OF APPLIED PHYSICS, 1980, 51 (06) :3134-3136
[5]  
Focsa C, 2008, J OPTOELECTRON ADV M, V10, P2380
[6]   Wall material effects in stationary plasma thrusters. I. Parametric studies of an SPT-100 [J].
Gascon, N ;
Dudeck, M ;
Barral, S .
PHYSICS OF PLASMAS, 2003, 10 (10) :4123-4136
[7]  
Gestal D. Milligan. D., 2006, 42 AIAA JOINT PROP C
[8]  
Goebel D.M., 2008, Fundamentals of electric propulsion: ion and Hall thrusters, P24, DOI DOI 10.1109/AERO.2000.878373
[9]  
Jahn R. G., 2003, ENCY PHYS SCI TECHNO, V5, DOI DOI 10.1016/B0-12-227410-5/00201-5
[10]  
Kim V., 2001, 27 INT EL PROP C PAS