Plasma in aqueous methanol: Influence of plasma initiation mechanism on hydrogen production

被引:16
作者
Xin, Yanbin [1 ]
Wang, Quanli [1 ]
Sun, Jiabao [1 ]
Sun, Bing [1 ]
机构
[1] Dalian Maritime Univ, Coll Environm Sci & Engn, Dalian 116026, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen production; Aqueous methanol; In -liquid discharge plasma; Plasma initiation mechanism; Energy and economics analysis; PULSED DISCHARGE; THERMAL-DECOMPOSITION; ETHANOL DECOMPOSITION; MICROWAVE-DISCHARGE; DIMETHYL ETHER; FUEL-CELL; WATER; ENERGY; TORCH;
D O I
10.1016/j.apenergy.2022.119892
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study presents a method of H2 produced by discharge plasma direct in aqueous methanol and explains how to achieve efficient H2 production in liquid phase. A high flow rate and a low energy consumption of H2 production are achieved by alternating current (AC) discharge, which is generated in a gas bubble pre-produced by joule heat. No soot is formed during the discharge process to ensure that H2 production can proceed continually and stably. The energy conversion efficiency of AC discharge in aqueous methanol for H2 production is close to 70 % and the feed cost per100 km is about euro2.9 combined with fuel cell, indicating a great prospect in vehicle application.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Large capacity hydrogen production by microwave discharge plasma in liquid fuels ethanol [J].
Sun, Bing ;
Zhao, Xiaotong ;
Xin, Yanbin ;
Zhu, Xiaomei .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (38) :24047-24054
[22]   Enhanced hydrogen production by methanol decomposition using a novel rotating gliding arc discharge plasma [J].
Zhang, Hao ;
Zhu, Fengsen ;
Li, Xiaodong ;
Cen, Kefa ;
Du, Changming ;
Tu, Xin .
RSC ADVANCES, 2016, 6 (16) :12770-12781
[23]   Plasma processing methods for hydrogen production [J].
Mizeraczyk, Jerzy ;
Jasinski, Mariusz .
EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2016, 75 (02)
[24]   Operating parameters' influence on hydrogen production performance in microwave-induced plasma [J].
Bilbao, Diego Contreras ;
Machin, Einara Blanco ;
Pedroso, Daniel Travieso .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 80 :956-979
[25]   Decoupling analysis of the production mechanism of aqueous reactive species induced by a helium plasma jet [J].
Chen, Zeyu ;
Liu, Dingxin ;
Xu, Han ;
Xia, Wenjie ;
Liu, Zhijie ;
Xu, Dehui ;
Rong, Mingzhe ;
Kong, Michael G. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2019, 28 (02)
[26]   Characteristics of methane wet reforming driven by microwave plasma in liquid phase for hydrogen production [J].
Wang, Qiuying ;
Wang, Jiaqi ;
Zhu, Tonghui ;
Zhu, Xiaomei ;
Sun, Bing .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (69) :34105-34115
[27]   Plasma decomposition of methanol to produce hydrogen with an atmospheric-pressure nitrogen microwave plasma torch [J].
Niu, Yu-Long ;
Li, Shou-Zhe ;
Wang, Xing-Chang ;
Cao, Shu-Li ;
Yang, Dezheng ;
Zhang, Jialiang .
JOURNAL OF APPLIED PHYSICS, 2023, 134 (01)
[28]   Hydrogen generation by glow discharge plasma electrolysis of methanol solutions [J].
Yan, Zong Cheng ;
Li, Chen ;
Lin, Wang Hong .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (01) :48-55
[29]   Hydrogen generation from water, methane, and methanol with nonthermal plasma [J].
Kabashima, H ;
Einaga, H ;
Futamura, S .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2003, 39 (02) :340-345
[30]   Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review [J].
Pethaiah, Sethu Sundar ;
Sadasivuni, Kishor Kumar ;
Jayakumar, Arunkumar ;
Ponnamma, Deepalekshmi ;
Tiwary, Chandra Sekhar ;
Sasikumar, Gangadharan .
ENERGIES, 2020, 13 (22)