Plasma in aqueous methanol: Influence of plasma initiation mechanism on hydrogen production

被引:19
作者
Xin, Yanbin [1 ]
Wang, Quanli [1 ]
Sun, Jiabao [1 ]
Sun, Bing [1 ]
机构
[1] Dalian Maritime Univ, Coll Environm Sci & Engn, Dalian 116026, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen production; Aqueous methanol; In -liquid discharge plasma; Plasma initiation mechanism; Energy and economics analysis; PULSED DISCHARGE; THERMAL-DECOMPOSITION; ETHANOL DECOMPOSITION; MICROWAVE-DISCHARGE; DIMETHYL ETHER; FUEL-CELL; WATER; ENERGY; TORCH;
D O I
10.1016/j.apenergy.2022.119892
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study presents a method of H2 produced by discharge plasma direct in aqueous methanol and explains how to achieve efficient H2 production in liquid phase. A high flow rate and a low energy consumption of H2 production are achieved by alternating current (AC) discharge, which is generated in a gas bubble pre-produced by joule heat. No soot is formed during the discharge process to ensure that H2 production can proceed continually and stably. The energy conversion efficiency of AC discharge in aqueous methanol for H2 production is close to 70 % and the feed cost per100 km is about euro2.9 combined with fuel cell, indicating a great prospect in vehicle application.
引用
收藏
页数:9
相关论文
共 57 条
[1]   RECOMBINATION AND DECOMPOSITION OF METHYLENE RADICALS AT HIGH-TEMPERATURES [J].
BAUERLE, S ;
KLATT, M ;
WAGNER, HG .
BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1995, 99 (06) :870-879
[2]   EVALUATED KINETIC DATA FOR COMBUSTION MODELING SUPPLEMENT-I [J].
BAULCH, DL ;
COBOS, CJ ;
COX, RA ;
FRANK, P ;
HAYMAN, G ;
JUST, T ;
KERR, JA ;
MURRELLS, T ;
PILLING, MJ ;
TROE, J ;
WALKER, RW ;
WARNATZ, J .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1994, 23 (06) :847-1033
[3]   Non-thermal plasmas in and in contact with liquids [J].
Bruggeman, Peter ;
Leys, Christophe .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (05)
[4]   Hydrogen production from alcohols and ethers cold plasma: A review [J].
Chen, Fengqiu ;
Huang, Xiaoyuan ;
Cheng, Dang-guo ;
Zhan, Xiaoli .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (17) :9036-9046
[5]   Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects [J].
Chung, Wei-Chieh ;
Chang, Moo-Been .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 62 :13-31
[6]   Hydrogen production by conversion of ethanol using atmospheric pressure microwave plasmas [J].
Czylkowski, D. ;
Hrycak, B. ;
Miotk, R. ;
Jasinski, M. ;
Dors, M. ;
Mizeraczyk, J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (40) :14039-14044
[7]   Hydrogen production for energy: An overview [J].
Dawood, Furat ;
Anda, Martin ;
Shafiullah, G. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (07) :3847-3869
[8]   What would it take for renewably powered electrosynthesis to displace petrochemical processes? [J].
De Luna, Phil ;
Hahn, Christopher ;
Higgins, Drew ;
Jaffer, Shaffiq A. ;
Jaramillo, Thomas F. ;
Sargent, Edward H. .
SCIENCE, 2019, 364 (6438) :350-+
[9]   Renewable Hydrogen Production by Alcohols Reforming Using Plasma and Plasma-Catalytic Technologies: Challenges and Opportunities [J].
Du, ChangMing ;
Mo, JianMin ;
Li, HongXia .
CHEMICAL REVIEWS, 2015, 115 (03) :1503-1542
[10]   Hydrogen production by steam-oxidative reforming of bio-ethanol assisted by Laval nozzle arc discharge [J].
Du, Changming ;
Li, Hongxia ;
Zhang, Lu ;
Wang, Jing ;
Huang, Dongwei ;
Xiao, Mudan ;
Cai, Jiawen ;
Chen, Yabin ;
Yan, Hanlu ;
Xiong, Ya ;
Xiong, Yi .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (10) :8318-8329