Kir7.1 disease mutant T153I within the inner pore affects K+ conduction

被引:8
|
作者
Beverley, Katie M. [1 ,2 ,3 ]
Shahi, Pawan K. [2 ,3 ]
Kabra, Meha [2 ,3 ]
Zhao, Qianqian [4 ]
Heyrman, Joseph [2 ]
Steffen, Jack [2 ]
Pattnaik, Bikash R. [1 ,2 ,3 ,5 ]
机构
[1] Univ Wisconsin, Sch Med & PublicHealth, Endocrinol & Reprod Physiol Grad Program, Madison, WI 53726 USA
[2] Univ Wisconsin, Sch Med & Publ Hlth, Dept Pediat, Madison, WI 53726 USA
[3] Univ Wisconsin, McPherson Eye Res Inst, Madison, WI 53726 USA
[4] Univ Wisconsin, Sch Med & Publ Hlth, Dept Biostat & Med Informat, Madison, WI USA
[5] Univ Wisconsin, Sch Med & Publ Hlth, Dept Ophthalmol & Visual Sci, Madison, WI 53726 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY | 2022年 / 323卷 / 01期
关键词
electrophysiology; innerpore structure; Kir7.1; pediatric blindness; potassium channels; OVARIAN-CANCER; CELLULAR SENESCENCE; SECRETORY PHENOTYPE; METASTASIS; INFLAMMATION; MECHANISMS; PROGRESSION; CELLS; P53;
D O I
10.1152/ajpcell.00093.2022
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Inward-rectifier potassium channel 7.1 (Kir7.1) is present in the polarized epithelium, including the retinal pigmented epithelium. A single amino acid change at position 153 in the KCNJ13 gene, a substitution of threonine to isoleucine in the Kir7.1 protein, causes blindness. We hypothesized that the disease caused by this single amino acid substitution within the transmembrane protein domain could alter the translation, localization, or ion transport properties. We assessed the effects of amino acid side-chain length, arrangement, and polarity on channel structure and function. We showed that the T153I mutation yielded a full-length protein localized to the cell membrane. Whole cell patch-clamp recordings and chord conductance analyses revealed that the T153I mutant channel had negligible K+ conductance and failed to hyperpolarize the membrane potential. However, the mutant channel exhibited enhanced inward current when rubidium was used as a charge carrier, suggesting that an inner pore had formed and the channel was dysfunctional. Substituting with a polar, nonpolar, or short side-chain amino acid did not affect the localization of the protein. Still, it had an altered channel function due to differences in pore radius. Polar side chains (cysteine and serine) with inner pore radii comparable to wildtype exhibited normal inward K+ conductance. Short side chains (glycine and alanine) produced a channel with wider than expected inner pore size and lacked the biophysical characteristics of the wild-type channel. Leucine substitution produced results similar to the T153I mutant channel. This study provides direct electrophysiological evidence for the structure and function of the Kir7.1 channel's narrow inner pore in regulating conductance.
引用
收藏
页码:C56 / C68
页数:13
相关论文
共 1 条
  • [1] Altered phosphatidylinositol regulation of mutant inwardly rectifying K+ Kir7.1 channels associated with inherited retinal degeneration disease
    Vera, Erwin
    Cornejo, Isabel
    Isabel Niemeyer, Maria
    Sepulveda, Francisco, V
    Pablo Cid, L.
    JOURNAL OF PHYSIOLOGY-LONDON, 2021, 599 (02): : 593 - 608